Skip to main content

Advertisement

Log in

Effect of Sn substitution on the energy storage properties of 0.45SrTiO3–0.2Na0.5Bi0.5TiO3–0.35BaTiO3 ceramics

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Phase constitution, microstructure, dielectric performance, polarization, breakdown strength as well as energy storage behaviors for the (1 − x)(0.45SrTiO3–0.2Na0.5Bi0.5TiO3–0.35BaTiO3)–xSnO2 (STNBTBT–Snx) were systematically investigated. The dielectric measurements exhibit a relaxor behavior, and the dielectric loss is very low (< 0.6%) at room temperature for all compositions. Significant refinement of grain size and low dielectric loss were observed with the addition of Sn, accounting for effectively enhanced dielectric breakdown strength (17.0–25.2 kV/mm when x = 0~0.09), beneficial for the energy storage applications. The sample with x = 0.07 exhibits the highest energy storage density of 2.25 J/cm3 and an energy storage efficiency of 79.51% at 24 kV/mm. Particularly, its energy storage properties were found to depend weakly on frequency (1–100 Hz). Our results suggest that this system can be a potential lead-free candidate for high electric energy storage and discharge efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Lahmar A, Belhadi J, El Marssi M, et al (2017) Energy storage property of lead-free Na0.5Bi0.5TiO3 ceramic and thin film. In: 2017 international conference in energy and sustainability in small developing economies (ES2DE). https://doi.org/10.1109/es2de.2017.8015355

  2. Zhang M, Zhang L, Zhu M et al (2016) Controlled functionalization of poly (4-methyl-1-pentene) films for high energy storage applications. J Mater Chem A 4:4797

    Article  Google Scholar 

  3. Wu P, Zhang M, Wang H, Tang H, Bass P, Zhang L (2017) Effect of coupling agents on the dielectric properties and energy storage of Ba0.5Sr0.5TiO3/P(VDF-CTFE) nanocomposites. AIP Adv 7:075210

    Article  Google Scholar 

  4. Zhang L, Wu P, Li Y, Cheng Z-Y (2014) Preparation process and dielectric properties of Ba0.5Sr0.5TiO3-P(VDF-CTFE) nanocomposites. Compos Part B 56:284

    Article  Google Scholar 

  5. Zhao Y, Hao X, Li M (2014) Dielectric properties and energy-storage performance of (Na0.5Bi0.5)TiO3 thick films. J Alloys Compd 601:112–115

    Article  Google Scholar 

  6. Pan J, Li K, Chuayprakong S, Hsu T, Wang Q (2010) High-temperature poly (phthalazinone ether ketone) thin films for dielectric energy storage. ACS Appl Mater Interfaces 2:1286–1289

    Article  Google Scholar 

  7. Wang ZJ, Cao MH, Yao ZH et al (2014) Dielectric relaxation behavior and energy storage properties in SrTiO3 ceramics with trace amounts of ZrO2 additives. Ceram Int 40:14127–14132

    Article  Google Scholar 

  8. Wang C, Lou XJ, Xia TD et al (2017) The dielectric, strain and energy storage density of BNT-BKH x T1−x piezoelectric ceramics. Ceram Int 43:9253–9258

    Article  Google Scholar 

  9. Wang T, Jin L, Li C, Hu Q, Wei X (2015) Relaxor ferroelectric BaTiO3–Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J Am Ceram Soc 98:559

    Article  Google Scholar 

  10. Cui CW, Pu YP, Gao ZY et al (2017) Structure, dielectric and relaxor properties in lead-free ST-NBT ceramics for high energy storage applications. J Alloys Compd 711:319–326

    Article  Google Scholar 

  11. Wang T, Jin L, Shu LL et al (2014) Energy storage properties in Ba0.4Sr0.6TiO3 ceramics with addition of semi-conductive BaO–B2O3–SiO2–Na2CO3–K2CO3 glass. J Alloys Compd 617:399–403

    Article  Google Scholar 

  12. Liu X, Du HL, Liu XC et al (2016) Energy storage properties of BiTi0.5Zn0.5O3–Bi0.5Na0.5TiO3–BaTiO3 relaxor ferroelectrics. Ceram Int 42:17876–17879

    Article  Google Scholar 

  13. Cao WP, Li WL, Dai XF, Zhang TD, Sheng J, Hou YF, Fei WD (2016) Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics. J Eur Ceram Soc 36:593–600

    Article  Google Scholar 

  14. Cao WP, Li WL, Zhang TD et al (2015) High-energy storage density and efficiency of (1 − x)[0.94NBT–0.06BT]–xST lead-free ceramics. Energy Technol 3:1198–1204

    Article  Google Scholar 

  15. Payne WH, Tennery VJ (1965) Dielectric and structural investigations of the system BaTiO3–BaHfO3. J Am Ceram Soc 48:413–417

    Article  Google Scholar 

  16. Chen A, Zhi Y, Zhi J (2000) Impurity-induced ferroelectric relaxor behavior in quantum paraelectric SrTiO3 and ferroelectric BaTiO3. Phys Rev B 61:957

    Article  Google Scholar 

  17. Zhi J, Chen A, Zhi Y, Vilarinho PM, Baptista JL (1998) Dielectric properties of Ba(Ti1−yY y )O3 ceramics. J Appl Phys 84:983

    Article  Google Scholar 

  18. Syono Y, Akimoto S, Kohn K (1969) Structure relations of hexagonal perovskite-like compounds ABX3 at high pressure. J Phys Soc Jpn 26:993–999

    Article  Google Scholar 

  19. Smolenskii GA, Isupov VA (1954) Segnetoelektricheskie svoistva tverdykh rastvorov stannata bariya v titanate bariya. Zh Tekh Fiz 24:1375–1386

    Google Scholar 

  20. Xie J, Hao H, Liu HX et al (2016) Dielectric relaxation behavior and energy storage properties of Sn modified SrTiO3 based ceramics. Ceram Int 42:12796–12801

    Article  Google Scholar 

  21. Pu YP, Yao MT, Zhang L et al (2016) High energy storage density of 0.55Bi0.5Na0.5TiO3–0.45Ba0.85Ca0.15Ti0.9−xZr0.1Sn x O3 ceramics. J Alloys Compd 687:689–695

    Article  Google Scholar 

  22. Ganesh I, Gupta AK, Kumar PP et al (2012) Preparation and characterization of Co-doped TiO2 materials for solar light induced current and photocatalytic applications. Mater Chem Phys 135:220–234

    Article  Google Scholar 

  23. Morris D, Dou Y, Rebane J, Mitchell CEJ, Egdell RG (2000) Photoemission and STM study of the electronic structure of Nb-doped TiO2. Phys Rev B Condens Matter Mater Phys 61:13445

    Article  Google Scholar 

  24. Zhong X, Zhang G, Qiu Y, Chen Z, Guo X (2013) Electrochemical migration of tin in thin electrolyte layer containing chloride ions. Corros Sci 74:71–82

    Article  Google Scholar 

  25. Gai Z, Cheng Z, Wang X et al (2014) A colossal dielectric constant of an amorphous TiO2:(Nb, In) film with low loss fabrication at room temperature. J Mater Chem C 2:6790–6795

    Article  Google Scholar 

  26. Cheng Y, Yi Z, Wang C (2017) Controllable fabrication of C/Sn and C/SnO/Sn composites as anode materials for high-performance lithium-ion batteries. Chem Eng J 330:1035–1043

    Article  Google Scholar 

  27. Ianculescu A, Berger D, Curecheriu LP, Drăgan N, Vasile E (2008) Properties of Ba1−xSr x TiO3 ceramics prepared by the modified-Pechini method. Ferroelectrics 369:22–34

    Article  Google Scholar 

  28. Filipic C, Hemberger J, Kutnjak Z, Levstik A, Loidl A (2001) Frequency denpendency of dielectric nonlinearity in PMN relaxor system. J Eur Ceram Soc 21:1323–1325

    Article  Google Scholar 

  29. Chen XL, Chen J, Ma DD, Fang L, Zhou HF (2015) Thermally stable BaTiO3–Bi(Mg2/3Nb1/3)O3 solid solution with high relative permittivity in a broad temperature usage range. J Am Ceram Soc 98:804–810

    Article  Google Scholar 

  30. Jin L, Huo R, Guo R et al (2016) Diffuse phase transitions and giant electrostrictive coefficients in lead-free Fe3+-doped 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 ferroelectric ceramics. ACS Appl Mater Interfaces 8:31109

    Article  Google Scholar 

  31. Uchino K, Nomura S (1982) Exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectr Lett Sect 44:55–61

    Article  Google Scholar 

  32. Pilgrim SM, Sutherland AE, Winzer SR (1990) Diffuseness as a useful parameter for relaxor ceramics. J Am Ceram Soc 73:3122–3125

    Article  Google Scholar 

  33. Pan ZB, Yao LM, Zhai JW, Shen B et al (2016) Excellent energy density of polymer nanofibers induced by moderate interfacial area. J Mater Chem A 4(34):13259–13263

    Article  Google Scholar 

  34. Chauhan A, Patel S, Vaish R (2014) Mechanical confinement for improved energy storage density in BNT-BT-KNN lead-free ceramic capacitors. AIP Adv 4:087106

    Article  Google Scholar 

  35. Ren PR, Wang Q, Li SF et al (2017) Energy storage density and tunable dielectric properties of BaTi0.85Sn0.15O3/MgO composite ceramics prepared by SPS. J Eur Ceram Soc 37:1501–1507

    Article  Google Scholar 

  36. Gao F, Dong XL, Mao CL et al (2011) Energy-storage properties of 0.89(Bi0.5Na0.5)TiO3–0.06BaTiO3–0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics. J Am Ceram Soc 94:4382–4386

    Article  Google Scholar 

  37. Liu ZC, Ren PR, Long CB, Wang X, Wan YH, Zhao GY (2017) Enhanced energy storage properties of NaNbO3 and SrZrO3 modified Bi0.5Na0.5TiO3 based ceramics. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2017.05.162

    Google Scholar 

  38. Zheng DG, Zuo RZ (2017) Enhanced energy storage properties in La(Mg1/2Ti1/2)O3-modified BiFeO3–BaTiO3 lead-free relaxor ferroelectric ceramics within a wide temperature range. J Eur Ceram Soc 37:413–418

    Article  Google Scholar 

  39. Wu YJ, Huang YH, Wang N, Li J, Fu MS, Chen XM (2017) Effects of phase constitution and microstructure on energy storage properties of barium strontium titanate ceramics. J Eur Ceram Soc 37:2099–2104

    Article  Google Scholar 

  40. Liu BB, Wang XH, Zhang RX et al (2017) Energy storage properties of ultra fine-grained Ba0.4Sr0.6TiO3-based ceramics sintered at low temperature. J Alloys Compd 691:619–623

    Article  Google Scholar 

  41. Li Q, Wang J, Liu ZY, Dong GZ, Fan HQ (2016) Enhanced energy-storage properties of BaZrO3-modified 0.80Bi0.5Na0.5TiO3–0.20Bi0.5K0.5TiO3 lead-free ferroelectric ceramics. J Mater Sci 51:1153–1160 https://doi.org/10.1007/s10853-015-9446-6

    Article  Google Scholar 

  42. Xu JW, Lu XP, Yang L et al (2017) Enhanced electrical energy storage properties in La doped (Bi0.5Na0.5)0.93Ba0.07TiO3 lead-free ceramics by addition of La2O3 and La(NO3)3. J Mater Sci 52:10062–10072 https://doi.org/10.1007/s10853-017-1209-0

    Article  Google Scholar 

  43. Jin L, Li F, Zhang S (2014) Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J Am Ceram Soc 97:1–27

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (51372144, 51641207), and the Key Program of Innovative Research Team of Shaanxi Province (2014KCT-06) and National Undergraduate Training Programs for Innovation and Entrepreneurship (201710708009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongping Pu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, C., Pu, Y. Effect of Sn substitution on the energy storage properties of 0.45SrTiO3–0.2Na0.5Bi0.5TiO3–0.35BaTiO3 ceramics. J Mater Sci 53, 9830–9841 (2018). https://doi.org/10.1007/s10853-018-2282-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2282-8

Keywords

Navigation