Journal of Materials Science

, Volume 53, Issue 14, pp 10231–10239 | Cite as

Electromechanical-mnemonic effects in BiFeO3 for electric field history-dependent crystallographic phase patterning

  • S. M. Neumayer
  • N. Browne
  • A. B. Naden
  • D. Edwards
  • D. Mazumdar
  • N. Bassiri-Gharb
  • A. Kumar
  • B. J. RodriguezEmail author
Electronic materials


Strained bismuth ferrite thin films unite a wealth of functional properties including ferroelectricity, ferromagnetism, electrooptic coupling and interface-mediated conductivity. The coexistence of rhombohedral (R) and tetragonal (T) phases in these films further contributes to their versatility, as structural transitions can modify functional behavior and be leveraged to engineer properties such as electrochromism, magnetic characteristics, electromechanical response and charge transport. However, potential device applications necessitate precise control of the location and size of R and T phases and associated microstructures. Here, distinct RT phase patterns of different spatial expanse are obtained by appropriately pre-poling the film by applying an electric field with an atomic force microscope tip during scanning, as well as through local application of a certain sequence of voltage pulses. Moreover, the impact of field history on ferroelectric characteristics is investigated, providing further opportunities to tailor functional behavior.



The authors would like to thank S. Jesse for providing the band excitation acquisition code used in this work. This publication has emanated from research conducted with the financial support of Science Foundation Ireland under the US-Ireland R&D Partnership Programme Grant Number SFI/14/US/I3113. A.N. and A.K. acknowledge support by the Department of Education and Learning, Northern Ireland through the US-Ireland R&D partnership grant no. USI-082 and Engineering and Physical Sciences Research Council (EPSRC) through contract EP/N018389. NBG gratefully acknowledges support from US National Science Foundation through grant CMMI-1537262.

Supplementary material

10853_2018_2278_MOESM1_ESM.pdf (853 kb)
Supplementary material 1 (PDF 853 kb)


  1. 1.
    Wang C, Jin KJ, Xu ZT et al (2011) Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO3 thin films. Appl Phys Lett 98:1–3Google Scholar
  2. 2.
    Li Q, Cao Y, Yu P et al (2015) Giant elastic tunability in strained BiFeO3 near an electrically induced phase transition. Nat Commun 6:1–9Google Scholar
  3. 3.
    Sando D, Yang Y, Bousquet E et al (2016) Large elasto-optic effect and reversible electrochromism in multiferroic BiFeO3. Nat Commun 7:10718CrossRefGoogle Scholar
  4. 4.
    He Q, Chu Y-H, Heron JT et al (2011) Electrically controllable spontaneous magnetism in nanoscale mixed phase multiferroics. Nat Commun 2:225CrossRefGoogle Scholar
  5. 5.
    Seidel J, Vasudevan RK, Valanoor N (2016) Topological structures in multiferroics—domain walls, skyrmions and vortices. Adv Electron Mater 2:1500292CrossRefGoogle Scholar
  6. 6.
    Alsubaie A, Sharma P, Liu G et al (2017) Mechanical stress-induced switching kinetics of ferroelectric thin films at the nanoscale. Nanotechnology 28:75709CrossRefGoogle Scholar
  7. 7.
    Jeon JH, Joo H-Y, Kim Y-M et al (2016) Selector-free resistive switching memory cell based on BiFeO3 nano-island showing high resistance ratio and nonlinearity factor. Sci Rep 6:23299CrossRefGoogle Scholar
  8. 8.
    Boyn S, Girod S, Garcia V et al (2014) High-performance ferroelectric memory based on fully patterned tunnel junctions. Appl Phys Lett 104:52909CrossRefGoogle Scholar
  9. 9.
    Morelli A, Johann F, Burns SR et al (2016) Deterministic switching in bismuth ferrite nanoislands. Nano Lett 16:5228–5234CrossRefGoogle Scholar
  10. 10.
    Moreau JM, Michel C, Gerson R, James WJ (1971) Ferroelectric BiFeO3 X-ray and neutron diffraction study. J Phys Chem Solids 32:1315–1320CrossRefGoogle Scholar
  11. 11.
    Ricinschi D, Yun K, Okuyama M (2006) A mechanism for the 150 µC cm−2 polarization of BiFeO3 films based on first-principles calculations and new structural data BiFeO3 films based on first-principles calculations and. J Phys: Condens Matter 18:L97Google Scholar
  12. 12.
    Ravindran P, Vidya R, Kjekshus A et al (2006) Theoretical investigation of magnetoelectric behavior in BiFeO3. Phys Rev B 74:224412CrossRefGoogle Scholar
  13. 13.
    Ederer C, Spaldin NA (2005) Effect of epitaxial strain on the spontaneous polarization of thin film ferroelectrics. Phys Rev Lett 95:257601CrossRefGoogle Scholar
  14. 14.
    Zeches RJ, Rossell MD, Zhang JX et al (2009) A strain-driven morphotropic phase boundary in BiFeO3. Science 326:977–980CrossRefGoogle Scholar
  15. 15.
    Béa H, Dupé B, Fusil S et al (2009) Evidence for room-temperature multiferroicity in a compound with a giant axial ratio. Phys Rev Lett 102:217603CrossRefGoogle Scholar
  16. 16.
    Mazumdar D, Shelke V, Iliev M et al (2010) Nanoscale switching characteristics of nearly tetragonal BiFeO3 thin films. Nano Lett 10:2555–2561CrossRefGoogle Scholar
  17. 17.
    Straumal BB, Protasova SG, Mazilkin AA et al (2016) Ferromagnetic behaviour of ZnO: the role of grain boundaries. Beilstein J Nanotechnol 7:1936–1947CrossRefGoogle Scholar
  18. 18.
    Straumal BB, Mazilkin AA, Protasova SG et al (2015) Grain boundaries as a source of ferromagnetism and increased solubility of Ni in nanograined ZnO. Rev Adv Mater Sci 41:61Google Scholar
  19. 19.
    Chen Y, Washburn J (1996) Structural transition in large-lattice-mismatch heteroepitaxy. Phys Rev Lett 77:4046–4049CrossRefGoogle Scholar
  20. 20.
    Sharma P, Heo Y, Jang B et al (2016) Structural and electronic transformation pathways in morphotropic BiFeO3. Sci Rep 6:32347CrossRefGoogle Scholar
  21. 21.
    Sharma P, Kang KR, Jang BK et al (2016) Unraveling elastic anomalies during morphotropic phase transitions. Adv Electron Mater 2:1600283CrossRefGoogle Scholar
  22. 22.
    Vasudevan RK, Okatan MB, Liu YY et al (2013) Unraveling the origins of electromechanical response in mixed-phase bismuth ferrite. Phys Rev B Condens Matter Mater Phys 88:1–7CrossRefGoogle Scholar
  23. 23.
    Vasudevan RK, Liu Y, Li J et al (2011) Nanoscale control of phase variants in strain-engineered BiFeO3. Nano Lett 11:3346–3354CrossRefGoogle Scholar
  24. 24.
    Zhang JX, Xiang B, He Q et al (2011) Large field-induced strains in a lead-free piezoelectric material. Nat Nanotechnol 6:98–102CrossRefGoogle Scholar
  25. 25.
    Cao Y, Yang S, Jesse S et al (2016) Exploring polarization rotation instabilities in super-tetragonal BiFeO3 epitaxial thin films and their technological implications. Adv Electron Mater 2:1600307CrossRefGoogle Scholar
  26. 26.
    Seidel J, Maksymovych P, Batra Y et al (2010) Domain wall conductivity in La-doped BiFeO3. Phys Rev Lett 105:197603CrossRefGoogle Scholar
  27. 27.
    Heo Y, Hong Lee J, Xie L et al (2016) Enhanced conductivity at orthorhombic–rhombohedral phase boundaries in BiFeO3 thin films. NPG Asia Mater 8:e297CrossRefGoogle Scholar
  28. 28.
    Kim Y, Kumar A, Ovchinnikov O et al (2012) First-order reversal curve probing of spatially resolved polarization switching dynamics in ferroelectric nanocapacitors. ACS Nano 6:491–500CrossRefGoogle Scholar
  29. 29.
    Guo S, Ovchinnikov OS, Curtis ME et al (2010) Spatially resolved probing of Preisach density in polycrystalline ferroelectric thin films. J Appl Phys 108:84103CrossRefGoogle Scholar
  30. 30.
    Ovchinnikov O, Jesse S, Guo S et al (2010) Local measurements of Preisach density in polycrystalline ferroelectric capacitors using piezoresponse force spectroscopy. Appl Phys Lett 96:112906CrossRefGoogle Scholar
  31. 31.
    Jesse S, Vasudevan RK, Collins L et al (2014) Band excitation in scanning probe microscopy: recognition and functional imaging. Annu Rev Phys Chem 65:519–536CrossRefGoogle Scholar
  32. 32.
    Jesse S, Kalinin SV, Proksch R et al (2007) The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale. Nanotechnology 18:435503CrossRefGoogle Scholar
  33. 33.
    Balke N, Bdikin I, Kalinin SV, Kholkin AL (2009) Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: state of the art and prospects for the future. J Am Ceram Soc 92:1629–1647CrossRefGoogle Scholar
  34. 34.
    Damodaran AR, Liang C-W, He Q et al (2011) Nanoscale structure and mechanism for enhanced electromechanical response of highly strained BiFeO3 thin films. Adv Mater 23:3170–3175CrossRefGoogle Scholar
  35. 35.
    Fu H, Cohen RE (2000) Polarization rotation mechanism for ultrahigh electrochemical response in single-crystal piezoelectrics. Nature 403:281–283. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. M. Neumayer
    • 1
  • N. Browne
    • 2
  • A. B. Naden
    • 2
  • D. Edwards
    • 2
  • D. Mazumdar
    • 3
  • N. Bassiri-Gharb
    • 4
  • A. Kumar
    • 2
  • B. J. Rodriguez
    • 1
    Email author
  1. 1.School of Physics and Conway InstituteUniversity College DublinDublinIreland
  2. 2.Centre for Nanostructured Media, School of Mathematics and PhysicsQueen’s University BelfastBelfastUK
  3. 3.Department of PhysicsSouthern Illinois UniversityCarbondaleUSA
  4. 4.School of Materials Science and Engineering and George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations