Journal of Materials Science

, Volume 53, Issue 13, pp 9861–9876 | Cite as

Novel nanocomposites based on chlorinated styrene butadiene rubber and manganous tungstate: focus on curing, mechanical, electrical and solvent transport properties

  • V. C. Jasna
  • T. Anilkumar
  • G. Mathew
  • M. T. Ramesan


The present work investigates the influence of loading of manganous tungstate (MnWO4) nanoparticles on the rheometric processing characteristics, crystallinity, morphology, glass transition temperature, oil resistance, transport behavior, mechanical and electrical properties of chlorinated styrene butadiene rubber (Cl-SBR). The reduction in the overall amorphous nature of Cl-SBR has been observed with the addition of nanofillers, as confirmed by X-ray diffraction studies. The maximum uniform dispersion of nanofiller in Cl-SBR has been noted at 7-phr loading, while at higher loadings, filler agglomerations have been observed in the scanning electron micrographs. An increase in the glass transition values with the addition of nanoparticles proves the reduced flexibility of the elastomer systems. The reduction in optimum cure time with the loading of nanoparticles has been found to be beneficial as far as the production rate of articles using these nanocomposites is concerned. Among the mechanical properties studies, tensile strength, modulus and tear strength registered an increase in the loading of nanofillers up to 7 phr due to the reinforcement of elastomer by the nanoparticles. The AC conductivity of Cl-SBR/MnWO4 nanocomposite increased with increasing the frequency and loading of nanoparticles. It is important that at 7-phr loading of nanoparticles, the conductivity value reaches the range of semiconductors. The superior reinforcement of Cl-SBR with 7-phr nanoparticles has been supported by the results of solvent diffusion and transport studies also. Values of solvent sorption parameters such as the energy of activation and enthalpy of diffusion have been found to be complementary to each other supporting the results obtained earlier. The reinforcing ability of the nanoparticles in Cl-SBR has been correlated with Lorentz and Park model.



The authors wish to thank Prof. P. P. Pradyumnan, Department of Physics, University of Calicut, and Prof. P. Pradeep, Department of Physics, NIT Calicut, for providing necessary facilities in the department.


  1. 1.
    Li Y, Wang Q, Wang T, Pan G (2012) Preparation and tribological properties of graphene oxide/nitrile rubber nanocomposites. J Mater Sci 47:730–738. CrossRefGoogle Scholar
  2. 2.
    Cho CH, Cho MS, Sung JH, Choi HJ, Jhon MS (2004) Preparation and characterization of poly (vinyl butyral)/Na+-montmorillonite nanocomposite. J Mater Sci 39:3151–3153. CrossRefGoogle Scholar
  3. 3.
    Tang Z, Zhang C, Zhu L, Guo B (2016) Low permeability styrene butadiene rubber/boehmite nanocomposites modified with tannic acid. Mater Des 103:25–31CrossRefGoogle Scholar
  4. 4.
    Kar S, Maji PK, Bhowmick AK (2010) Chlorinated polyethylene nanocomposites: thermal and mechanical behavior. J Mater Sci 45:64–71. CrossRefGoogle Scholar
  5. 5.
    Gómez M, BrachoD Palza H, Quijada R (2015) Effect of morphology on the permeability, mechanical and thermal properties of polypropylene/SiO2 nanocomposites. Polym Int 64:1245–1251CrossRefGoogle Scholar
  6. 6.
    Ye HJ, Shao WZ, Zhen L (2013) Crystallization kinetics and phase transformation of poly (vinylidene fluoride) films incorporated with functionalized BaTiO3 nanoparticles. J Appl Polym Sci 129:2940–2949CrossRefGoogle Scholar
  7. 7.
    Ramesan MT, Jose C, Jayakrishnan P, Anilkumar T (2018) Multifunctional ternary composites of poly (vinyl alcohol)/cashew tree gum/pumice particles. Polym Compos 39:38–45CrossRefGoogle Scholar
  8. 8.
    Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos B 39:933–961CrossRefGoogle Scholar
  9. 9.
    Goren K, Chen L, Schadler LS, Ozisik R (2010) Influence of nanoparticle surface chemistry and size on supercritical carbon dioxide processed nanocomposite foam morphology. J Supercrit Fluids 51:420–427CrossRefGoogle Scholar
  10. 10.
    Wan C, Chen B (2012) Reinforcement and interphase of polymer/graphene oxide nanocomposites. J Mater Chem 22:3637–3646CrossRefGoogle Scholar
  11. 11.
    Brosseau C, Molinie P, Boulic F, Carmona F (2001) Mesostructure, electron paramagnetic resonance and magnetic properties of polymer carbon black composites. J Appl Phys 89:8297–8310CrossRefGoogle Scholar
  12. 12.
    Boulic F, Brosseau C, Mest YL, Loaec J, Carmona F (1998) Absorbency properties and electron paramagnetic resonance characterization of polymeric carbon black composites. J Phys D Appl Phys 31:1904–1912CrossRefGoogle Scholar
  13. 13.
    Brosseau C, Boulic F, Queffelecp P, Bourbigot C, Mest YL, Loaec J, Beroual A (1997) Dielectric and microstructure properties of polymer carbon black composites. J Appl Phys 81:882–891CrossRefGoogle Scholar
  14. 14.
    Lee KM, Weissgarber T, Kieback B (2004) Microstructural and chemical properties of AlN–Cu nanocomposite powders prepared by planetary ball milling. J Mater Sci 39:5235–5238. CrossRefGoogle Scholar
  15. 15.
    Schubert U (2009) Preparation of metal oxide or metal nanoparticles in silica via metal coordination to organo-functional trialkoxysilanes. Polym Int 58:317–322CrossRefGoogle Scholar
  16. 16.
    Changjie Y, Zhang Q, Junwei G, Junping Z, Youqiang S, Yuhang W (2011) Cure characteristics and mechanical properties of styrene-butadiene rubber/hydrogenated acrylonitrile-butadiene rubber/silica composites. J Polym Res 18:2487–2494CrossRefGoogle Scholar
  17. 17.
    Das A, Costa FR, Wagenknecht U, Heinrich G (2008) Nanocomposites based on chloroprene rubber: effect of chemical nature and organic modification of nanoclay on the vulcanizate properties. Eur Polym J 44:3456–3465CrossRefGoogle Scholar
  18. 18.
    Viet CX, Ismail H, Rashid AA, Takeichi T, Thao VH (2008) Organoclay filled natural rubber nanocomposites: the effects of filler loading. Polym Plast Technol Eng 47:1090–1096CrossRefGoogle Scholar
  19. 19.
    Ramesan MT (2014) Flammability, oil resistance, and interaction of petroleum fuels with dichlorocarbene modified styrene butadiene rubber/fly ash composites. Pet Sci Technol 32:1775–1783CrossRefGoogle Scholar
  20. 20.
    Li H, Sun J, Song Y, Zheng Q (2009) The mechanical and viscoelastic properties of SBR vulcanizates filled with organically modified montmorillonite and silica. J Mater Sci 44:1881–1888. CrossRefGoogle Scholar
  21. 21.
    Guo L, Huang G, Zheng J, Li G (2014) Effect of nanosilica on thermal oxidative degradation of SBR. J Therm Anal Calorim 116:359–366CrossRefGoogle Scholar
  22. 22.
    Ramesan MT, Alex R (2000) Dichlorocarbene modified SBR—vulcanization behaviour and physical properties. Kautsch Gummi Kunstst 53:596–600Google Scholar
  23. 23.
    Ramesan MT, Alex R (1998) Dichlorocarbene modification of styrene-butadiene rubber. J Appl Polym Sci 68:153–160CrossRefGoogle Scholar
  24. 24.
    Ahmadi M, Shojaei A (2015) Reinforcing mechanisms of carbon nanotubes and high structure carbon black in natural rubber/styrene-butadiene rubber blend prepared by mechanical mixing-effect of bound rubber. Polym Int 64:1627–1638CrossRefGoogle Scholar
  25. 25.
    Cho BM, Kim GH (2010) Effect of the processing parameters on the surface resistivity of acrylonitrile–butadiene rubber/multiwalled carbon nanotube. J Appl Polym Sci 116:555–561CrossRefGoogle Scholar
  26. 26.
    Jasna VC, Ramesan MT (2017) Studies on the mechanical, electrical properties and interaction of petroleum fuels with SBR/manganous tungstate nanocomposites. J Inorg Organomet Polym 27:968–978CrossRefGoogle Scholar
  27. 27.
    Khaksar M, Boghaei DM, Amini M (2015) Synthesis, structural characterization and reactivity of manganese tungstate nanoparticles in the oxidative degradation of methylene blue. C R Chim 18:199–203CrossRefGoogle Scholar
  28. 28.
    Paul PK, Hussain SA, Bhattacharjee D, Pal M (2013) Preparation of polystyrene–clay nanocomposite by solution intercalation technique. Bull Mater Sci 36:361–366CrossRefGoogle Scholar
  29. 29.
    Ramesan MT, Santhi V (2018) Synthesis, characterization, conductivity, thermal properties and sensor application study of polypyrrole/silver doped nickel oxide nanocomposites. Comp Interfaces. Google Scholar
  30. 30.
    Bussu G, Lazzeri A (2006) On the use of dynamic mechanical thermal analysis (DMTA) for measuring glass transition temperature of polymer matrix fibre reinforced composites. J Mater Sci 41:6072–6076. CrossRefGoogle Scholar
  31. 31.
    Lakshminarayanan S, Gelves GA, Sundraraj U (2012) Vulcanization behavior and mechanical properties of organoclay fluoroelastomer nanocomposites. J Appl Polym Sci 124:5056–5063Google Scholar
  32. 32.
    Ji XL, Jing JK, Jiang W, Jiang BZ (2002) Tensile modulus of polymer nanocomposites. Polym Eng Sci 42:983–993CrossRefGoogle Scholar
  33. 33.
    Wang M, Fan X, Thitsartarn W, He C (2015) Rheological and mechanical properties of epoxy/clay nanocomposites with enhanced tensile and fracture toughness. Polymer 58:43–52CrossRefGoogle Scholar
  34. 34.
    Ramesan MT, Jayakrishnan P, Anilkumar T, Mathew G (2018) Influence of copper sulphide nanoparticles on the structural, mechanical and dielectric properties of poly (vinyl alcohol)/poly (vinyl pyrrolidone) blend nanocomposites. J Mater Sci Mater Electron 29:1992–2000CrossRefGoogle Scholar
  35. 35.
    Eckersley ST, Chaput B (2001) Tensile properties of elastomeric polyolefin thin films: the path to failure. J Appl Polym Sci 80:2545–2557CrossRefGoogle Scholar
  36. 36.
    Jong L (2016) Particle size and particle–particle interactions on tensile properties and reinforcement of corn flour particles in natural rubber. Eur Polym J 74:136–147CrossRefGoogle Scholar
  37. 37.
    Gorrasi G, Piperopoulos E, Lanza M, Milone C (2013) Effect of morphology of the filler on the electrical behaviour of poly (l-lactide) nanocomposites. J Phys Chem Solids 74:1–6CrossRefGoogle Scholar
  38. 38.
    Ramesan MT, Santhi V (2017) In situ synthesis, characterization, conductivity studies of polypyrrole/silver doped zinc oxide nanocomposites and their application for ammonia gas sensing. J Mater Sci Mater Electron 28:18804–18814CrossRefGoogle Scholar
  39. 39.
    Abraham J, Muraleedharan K, Kumar CR, Thomas S, George SC (2017) Solvent transport characteristics of thermoplastic elastomer blends based on nylon and NBR. Polym Eng Sci 57:231–236CrossRefGoogle Scholar
  40. 40.
    George SC, Knorgen M, Thomas S (1999) Effect of nature and extent of crosslinking on swelling and mechanical behavior of styrene–butadiene rubber membranes. J Membr Sci 163:1–17CrossRefGoogle Scholar
  41. 41.
    Moly KA, Bhagawan SS, George SC, Thomas S (2007) Sorption and diffusion of aromatic solvents through linear low density polyethylene–ethylene vinyl acetate blend membranes. J Mater Sci 42:4552–4561. CrossRefGoogle Scholar
  42. 42.
    Hwang KK, Ryu SH, Hong SU (2002) Diffusion and sorption behavior of glycidyl methacrylate in styrene butadiene rubber. J Appl Polym Sci 86:2701–2706CrossRefGoogle Scholar
  43. 43.
    John J, Kunchandy S, Kumar K, Pius A, Thomas S (2010) Transport of methyl methacrylate monomer through natural rubber. J Mater Sci 45:409–419. CrossRefGoogle Scholar
  44. 44.
    Tung WS, Griffin PJ, Meth JS, Clarke N, Composto RJ, Winey KI (2016) Temperature-dependent suppression of polymer diffusion in polymer nanocomposites. ACS Macro Lett 5:735–739CrossRefGoogle Scholar
  45. 45.
    James J, Thomas GV, Pramoda KP, Thomas S (2017) Transport behaviour of aromatic solvents through styrene butadiene rubber/poly [methyl methacrylate] (SBR/PMMMA) interpenetrating polymer network (IPN) membranes. Polymer 116:76–88CrossRefGoogle Scholar
  46. 46.
    Ramesan MT (2014) Effect of fly ash on thermal stability, flammability, oil resistance and transport properties of chlorinated styrene butadiene rubber composites. J Elastom Plast 46:303–324CrossRefGoogle Scholar
  47. 47.
    Geethamma VG, Thomas S (2005) Diffusion of water and artificial seawater through coir fiber reinforced natural rubber composites. Polym Compos 26:136–143CrossRefGoogle Scholar
  48. 48.
    Padhi S, Achary PGR, Nayak NC (2015) Molecular transport behaviour of organic solvents through halloysite nanotubes filled ethylene-vinyl acetate copolymer. Bull Mater Sci 38:925–933CrossRefGoogle Scholar
  49. 49.
    Stephen R, Joseph K, Oommen Z, Thomas S (2007) Molecular transport of aromatic solvents through microcomposites of natural rubber (NR), carboxylated styrene butadiene rubber (XSBR) and their blends. Compos Sci Technol 67:1187–1194CrossRefGoogle Scholar
  50. 50.
    Sareena C, Sreejith MP, Ramesan MT, Purushothaman E (2015) Transport properties of coconut shell powder (CSP) reinforced natural rubber composites in aromatic solvents. Polym Bull 72:1683–1702CrossRefGoogle Scholar
  51. 51.
    Sujith A, Unnikrishnan G (2005) Barrier properties of natural rubber/ethylene vinyl acetate/carbon black composites. J Mater Sci 40:4625–4640. CrossRefGoogle Scholar
  52. 52.
    Sareena C, Ramesan MT, Purushothaman E (2013) Transport studies of peanut shell powder reinforced natural rubber composites in chlorinated solvents. Fibers Polym 14:1674–1687CrossRefGoogle Scholar
  53. 53.
    Hedenqvist MS, Backman A, Gällstedt M, Boyd RH, Gedde UW (2006) Morphology and diffusion properties of whey/montmorillonite nanocomposites. Compos Sci Technol 66:2350–2359CrossRefGoogle Scholar
  54. 54.
    Alva LR, Montiel AG, Vega MJA (2016) Diffusion of organic volatile molecules in LDPE/halloysite nanocomposites. Polym Compos 37:1267–1273CrossRefGoogle Scholar
  55. 55.
    Jasna VC, Ramesan MT (2018) Fabrication of novel nanocomposites from styrene butadiene rubber/zinc sulphide nanoparticles. J Mater Sci 53:8250–8262. CrossRefGoogle Scholar
  56. 56.
    Kumar PVA, Kumar SA, Varughese KT, Thomas S (2012) Transport properties of high-density polyethylene/ethylene propylene diene terpolymer blends. J Mater Sci 47:3293–3304. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CalicutThenhipalamIndia
  2. 2.Department of ChemistrySt. Marys College WayanadS. BatheryIndia

Personalised recommendations