Journal of Materials Science

, Volume 53, Issue 13, pp 9545–9556 | Cite as

Effect of stress ratios on tension–tension fatigue behavior and micro-damage evolution of basalt fiber-reinforced epoxy polymer composites

Composites
  • 72 Downloads

Abstract

The tension–tension fatigue behavior and damage mechanism of basalt fiber-reinforced epoxy polymer (BFRP) composites at different stress ratios are studied in this paper. The fatigue experiments were performed under stress ratios, R = σmin/σmax of 0.1 and 0.5, while the lifetime and the stiffness degradation were monitored and analyzed to investigate the effect of stress ratios. The damage propagation during fatigue loading was periodically monitored by using an in situ scanning electron microscope (SEM). The results show that the fatigue life decreases and the fatigue life degradation rate increases with the decrease of stress ratio for examined BFRP composites. The stiffness degradation is also sensitive to different stress ratios, showing a greater stiffness loss before failure at lower stress ratio. From the SEM images, it is indicated that the micro-damage mode shifts from interface debonding and matrix cracking into fiber breaking with decreasing stress ratios.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support provided by the National Key Research and Development Program of China (2017YFC0703000), the National Science Foundation of China (51678139), Key Consulting Project of Chinese Academy of Engineering (2016-XZ-13) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, CE02-2-44).

References

  1. 1.
    Vassilopoulos AP, Keller T (2011) Fatigue of fiber-reinforced composites. Springer Science & Business Media, LondonCrossRefGoogle Scholar
  2. 2.
    Keller T (2001) Recent all-composite and hybrid fibre-reinforced polymer bridges and buildings. Prog Struct Eng Mater 3(2):132–140CrossRefGoogle Scholar
  3. 3.
    Wu Z, Wang X, Zhao X, Noori M (2014) State-of-the-art review of FRP composites for major construction with high performance and longevity. Int J Sustain Mater Struct Syst 1(3):201–231Google Scholar
  4. 4.
    Wang X, Wu G, Wu Z, Dong Z, Xie Q (2014) Evaluation of prestressed basalt fiber and hybrid fiber reinforced polymer tendons under marine environment. Mater Des 64:721–728CrossRefGoogle Scholar
  5. 5.
    Wu G, Dong Z-Q, Wang X, Zhu Y, Wu Z-S (2014) Prediction of long-term performance and durability of BFRP bars under the combined effect of sustained load and corrosive solutions. J Compos Constr 19(3):04014058CrossRefGoogle Scholar
  6. 6.
    Wang X, Shi J, Liu J, Yang L, Wu Z (2014) Creep behavior of basalt fiber reinforced polymer tendons for prestressing application. Mater Des 59:558–564CrossRefGoogle Scholar
  7. 7.
    Wang X, Shi J, Wu G, Yang L, Wu Z (2015) Effectiveness of basalt FRP tendons for strengthening of RC beams through the external prestressing technique. Eng Struct 101:34–44CrossRefGoogle Scholar
  8. 8.
    Wu Z, Wang X, Iwashita K, Sasaki T, Hamaguchi Y (2010) Tensile fatigue behaviour of FRP and hybrid FRP sheets. Compos Part B Eng 41(5):396–402CrossRefGoogle Scholar
  9. 9.
    Colombo C, Vergani L, Burman M (2012) Static and fatigue characterisation of new basalt fibre reinforced composites. Compos Struct 94(3):1165–1174CrossRefGoogle Scholar
  10. 10.
    Dorigato A, Pegoretti A (2012) Fatigue resistance of basalt fibers-reinforced laminates. J Compos Mater 46(15):1773–1785CrossRefGoogle Scholar
  11. 11.
    Wu G, Wu Z-S, Luo Y-B, Sun Z-Y, Hu X-Q (2010) Mechanical properties of steel-FRP composite bar under uniaxial and cyclic tensile loads. J Mater Civ Eng 22(10):1056–1066CrossRefGoogle Scholar
  12. 12.
    El Refai A (2013) Durability and fatigue of basalt fiber-reinforced polymer bars gripped with steel wedge anchors. J Compos Constr 17(6):04013006CrossRefGoogle Scholar
  13. 13.
    Wu G, Wang H-T, Wu Z-S, Liu H-Y, Ren Y (2011) Experimental study on the fatigue behavior of steel beams strengthened with different fiber-reinforced composite plates. J Compos Constr 16(2):127–137CrossRefGoogle Scholar
  14. 14.
    Wang X, Shi J, Wu Z, Zhu Z (2015) Fatigue behavior of basalt fiber-reinforced polymer tendons for prestressing applications. J Compos Constr 20(3):04015079CrossRefGoogle Scholar
  15. 15.
    Wang X, Wu Z, Wu G, Zhu H, Zen F (2013) Enhancement of basalt FRP by hybridization for long-span cable-stayed bridge. Compos Part B Eng 44(1):184–192CrossRefGoogle Scholar
  16. 16.
    Zhao X, Wang X, Wu Z (2014) Micro-macro investigations on fatigue behavior of basalt fiber reinforced polymer composites. In: CICE conference. Vancouver, pp 20–22Google Scholar
  17. 17.
    Zhao X, Wang X, Wu Z, Zhu Z (2016) Fatigue behavior and failure mechanism of basalt FRP composites under long-term cyclic loads. Int J Fatigue 88:58–67CrossRefGoogle Scholar
  18. 18.
    Reifsnider K (1980) Fatigue behavior of composite materials. Int J Fract 16(6):563–583CrossRefGoogle Scholar
  19. 19.
    Philippidis TP, Vassilopoulos AP (2002) Complex stress state effect on fatigue life of GRP laminates.: part I, experimental. Int J Fatigue 24(8):813–823CrossRefGoogle Scholar
  20. 20.
    Passipoularidis V, Philippidis T (2009) A study of factors affecting life prediction of composites under spectrum loading. Int J Fatigue 31(3):408–417CrossRefGoogle Scholar
  21. 21.
    Vassilopoulos AP, Manshadi BD, Keller T (2010) Influence of the constant life diagram formulation on the fatigue life prediction of composite materials. Int J Fatigue 32(4):659–669CrossRefGoogle Scholar
  22. 22.
    Committee A (2011) Standard test methods for properties of continuous filament carbon and graphite fiber tows. (D4018.3123)Google Scholar
  23. 23.
    Kawai M, Teranuma T (2012) A multiaxial fatigue failure criterion based on the principal constant life diagrams for unidirectional carbon/epoxy laminates. Compos Part A Appl Sci Manuf 43(8):1252–1266CrossRefGoogle Scholar
  24. 24.
    Passipoularidis V, Brøndsted P (2010) Fatigue evaluation algorithms: review. Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi, RoskildeGoogle Scholar
  25. 25.
    Sutherland HJ, Mandell JF (2005) Optimized constant-life diagram for the analysis of fiberglass composites used in wind turbine blades. J Sol Energy Eng 127(4):563–569CrossRefGoogle Scholar
  26. 26.
    Harris B, Gathercole N, Lee J, Reiter H, Adam T (1997) Life–prediction for constant–stress fatigue in carbon–fibre composites. Philos Trans R Soc Lond A Math Phys Eng Sci 355(1727):1259–1294CrossRefGoogle Scholar
  27. 27.
    Kawai M, Koizumi M (2007) Nonlinear constant fatigue life diagrams for carbon/epoxy laminates at room temperature. Compos Part A Appl Sci Manuf 38(11):2342–2353CrossRefGoogle Scholar
  28. 28.
    Vassilopoulos AP, Manshadi BD, Keller T (2010) Piecewise non-linear constant life diagram formulation for FRP composite materials. Int J Fatigue 32(10):1731–1738CrossRefGoogle Scholar
  29. 29.
    Philippidis TP, Vassilopoulos AP (2004) Life prediction methodology for GFRP laminates under spectrum loading. Compos A Appl Sci Manuf 35(6):657–666CrossRefGoogle Scholar
  30. 30.
    Talreja R (1981) Fatigue of composite materials: damage mechanisms and fatigue-life diagrams. Proc R Soc A Math Phys Eng Sci 378(1775):461–475CrossRefGoogle Scholar
  31. 31.
    Gamstedt EK, Talreja R (1999) Fatigue damage mechanisms in unidirectional carbon-fibre-reinforced plastics. J Mater Sci 34(11):2535–2546CrossRefGoogle Scholar
  32. 32.
    Gamstedt EK, Berglund LA, Peijs T (1999) Fatigue mechanisms in unidirectional glass-fibre-reinforced polypropylene. Compos Sci Technol 59(5):759–768CrossRefGoogle Scholar
  33. 33.
    Evans A, Zok F (1994) The physics and mechanics of fibre-reinforced brittle matrix composites. J Mater Sci 29(15):3857–3896CrossRefGoogle Scholar
  34. 34.
    Talreja R (1985) Transverse cracking and stiffness reduction in composite laminates. J Compos Mater 19(4):355–375CrossRefGoogle Scholar
  35. 35.
    Reifsnider K, Highsmith A (1982) The relationship of stiffness changes in composite laminates to fracture-related damage mechanisms. Fracture of Composite Materials. Springer, Dordrecht, pp 279–290CrossRefGoogle Scholar
  36. 36.
    Gottesman T, Hashin Z, Brull M (1980) Effective elastic moduli of cracked fiber composites. Adv Compos Mater 1:749–758CrossRefGoogle Scholar
  37. 37.
    Steif PS (1984) Stiffness reduction due to fiber breakage. J Compos Mater 18(2):153–172CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National and Local Unified Engineering Research Centre for Basalt Fiber Production and Application Technology, International Institute for Urban Systems EngineeringSoutheast UniversityNanjingChina
  2. 2.Key Laboratory of C&PC Structures Ministry of EducationSoutheast UniversityNanjingChina
  3. 3.Composite Construction Laboratory (CCLab)École Polytechnique Fédérale De Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations