Journal of Materials Science

, Volume 53, Issue 13, pp 9701–9709 | Cite as

Organic vanadium oxy-acetylacetonate as electro-active anode material with high capacity and rate performance for lithium-ion batteries

Energy materials
  • 24 Downloads

Abstract

Vanadium oxy-acetylacetonate (VO(acac)2) was originally explored as an organic anode material for lithium-ion batteries (LIBs) with high capacity and rate performance. Specifically, the prepared VO(acac)2 has delivered capacity of 620 mA h g−1 at current density of 100 mA g−1 with nearly 100% coulombic efficiency during cycling. Furthermore, the cell exhibits good ultralong cycle stability and performs capacity of 508.5 mA h g−1 after 1000 cycles under 1000 mA g−1. Therefore, in the absence of any structure manipulation or conductive additives, the pristine VO(acac)2 shows high promises as advanced anode candidate of high capacity for LIBs.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China under Grant Nos. 91634111 and 51774261, and the Sino-German Joint Project from the National Natural Science Foundation of China under Grant No. 51761135108.

Supplementary material

10853_2018_2250_MOESM1_ESM.docx (153 kb)
Supplementary material 1 (DOCX 153 kb)

References

  1. 1.
    Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657CrossRefGoogle Scholar
  2. 2.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRefGoogle Scholar
  3. 3.
    Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRefGoogle Scholar
  4. 4.
    Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946CrossRefGoogle Scholar
  5. 5.
    Yao Z, Xia X, Zhou CA, Zhong Y, Wang Y, Deng S, Wang W, Wang X, Tu J (2008) Smart construction of integrated CNTs/Li4Ti5O12 core/shell arrays with superior high-rate performance for application in lithium-ion batteries. Adv Sci 5:1700786CrossRefGoogle Scholar
  6. 6.
    Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603CrossRefGoogle Scholar
  7. 7.
    Zheng SL, Wang XR, Yan H, Du H, Zhang Y (2016) Scalable and template-free synthesis of nanostructured Na1.08V6O15 as high-performance cathode material for lithium-ion batteries. Mater Res Bull 81:10–15CrossRefGoogle Scholar
  8. 8.
    Wang XR, Du H, Zhang Y, Zheng SL (2015) Template-free synthesis of Na0.95V3O8 nanobelts with improved cycleability as high-rate cathode material for rechargeable lithium ion batteries. Ceram Int 41:6127–6131CrossRefGoogle Scholar
  9. 9.
    Yang SB, Gong YJ, Liu Z, Zhan L, Hashim DP, Ma LL, Vajtai R, Ajayan PM (2013) Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage. Nano Lett 13:1596–1601CrossRefGoogle Scholar
  10. 10.
    Chao DL, Zhu CR, Xia XH, Liu JL, Zhang X, Wang J, Liang P, Lin JY, Zhang H, Shen ZX, Fan HJ (2015) Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett 15:565–573CrossRefGoogle Scholar
  11. 11.
    Zhang SD, Li YM, Wu CZ, Zheng F, Xie Y (2009) Novel flowerlike metastable vanadium dioxide (B) micronanostructures: facile synthesis and application in aqueous lithium ion batteries. J Phys Chem C 113:15058–15067CrossRefGoogle Scholar
  12. 12.
    Chen XY, Zhu HL, Chen YC, Shang YY, Cao AY, Hu LB, Rubloff GW (2012) MWCNT/V2O5 core/shell sponge for high areal capacity and power density Li-ion cathodes. ACS Nano 6:7948–7955CrossRefGoogle Scholar
  13. 13.
    Rui XH, Zhu JX, Sim D, Xu C, Zeng Y, Hng HH, Lim TM, Yan QY (2011) Reduced graphene oxide supported highly porous V2O5 spheres as a high-power cathode material for lithium ion batteries. Nanoscale 3:4752–4758CrossRefGoogle Scholar
  14. 14.
    Wang SQ, Li SR, Sun Y, Feng XY, Chen CH (2011) Three-dimensional porous V2O5 cathode with ultra high rate capability. Energy Environ Sci 4:2854–2857CrossRefGoogle Scholar
  15. 15.
    Ding YL, Wen YR, Wu C, van Aken PA, Maier J, Yu Y (2015) 3D V6O13 nanotextiles assembled from interconnected nanogrooves as cathode materials for high-energy lithium ion batteries. Nano Lett 15:1388–1394CrossRefGoogle Scholar
  16. 16.
    Xu N, Ma XX, Wang MF, Qian T, Liang JQ, Yang WL, Wang Y, Hu J, Yan CL (2016) Stationary full li-ion batteries with interlayer-expanded V6O13 cathodes and lithiated graphite anodes. Electrochim Acta 203:171–177CrossRefGoogle Scholar
  17. 17.
    Wang XR, Zheng SL, Mu XC, Zhang Y, Du H (2014) Additive-free synthesis of V4O7 hierarchical structures as high performance cathodes for lithium ion batteries. Chem Commun 50:6775–6778CrossRefGoogle Scholar
  18. 18.
    Yu M, Zeng Y, Han Y, Cheng X, Zhao W, Liang C, Tong Y, Tang H, Lu X (2015) Valence-optimized vanadium oxide supercapacitor electrodes exhibit ultrahigh capacitance and super-long cyclic durability of 100 000 cycles. Adv Funct Mater 25:3534–3540CrossRefGoogle Scholar
  19. 19.
    Wang XR, Zheng SL, Wang SN, Zhang Y, Du H (2016) Self-anchoring dendritic ternary vanadate compound on graphene nanoflake as high-performance conversion-type anode for lithium ion batteries. Nano Energy 22:179–188CrossRefGoogle Scholar
  20. 20.
    Shi Y, Wang JZ, Chou SL, Wexler D, Li HJ, Ozawa K, Liu HK, Wu YP (2013) Hollow structured Li3VO4 wrapped with graphene nanosheets in situ prepared by a one-pot template-free method as an anode for lithium-ion batteries. Nano Lett 13:4715–4720CrossRefGoogle Scholar
  21. 21.
    Prabaharan SRS, Michael MS, Radhakrishna S, Julien C (1997) Novel low-temperature synthesis and characterization of LiNiVO4 for high-voltage Li ion batteries. J Mater Chem 7:1791–1796CrossRefGoogle Scholar
  22. 22.
    Zhang X, Yang WW, Liu JG, Zhou Y, Feng SC, Yan SC, Yao YF, Wang G, Wan L, Fang C, Zou ZG (2016) Ultralong metahewettite CaV6O16 center dot 3H(2)O nanoribbons as novel host materials for lithium storage: towards high-rate and excellent long-term cyclability. Nano Energy 22:38–47CrossRefGoogle Scholar
  23. 23.
    Liu HM, Wang YG, Li L, Wang KX, Hosono E, Zhou HS (2009) Facile synthesis of NaV6O15 nanorods and its electrochemical behavior as cathode material in rechargeable lithium batteries. J Mater Chem 19:7885–7891CrossRefGoogle Scholar
  24. 24.
    Balogun M-S, Qiu W, Jian J, Huang Y, Luo Y, Yang H, Liang C, Lu X, Tong Y (2015) Vanadium nitride nanowire supported SnS2 nanosheets with high reversible capacity as anode material for lithium ion batteries. ACS Appl Mater Interfaces 7:23205–23215CrossRefGoogle Scholar
  25. 25.
    Lu X, Liu T, Zhai T, Wang G, Yu M, Xie S, Ling Y, Liang C, Tong Y, Li Y (2014) Improving the cycling stability of metal–nitride supercapacitor electrodes with a thin carbon shell. Adv Energy Mater 4:1300994CrossRefGoogle Scholar
  26. 26.
    Wang YG, Li HQ, He P, Hosono E, Zhou HS (2010) Nano active materials for lithium-ion batteries. Nanoscale 2:1294–1305CrossRefGoogle Scholar
  27. 27.
    Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Zaccaria RP, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443CrossRefGoogle Scholar
  28. 28.
    Armstrong MJ, O’Dwyer C, Macklin WJ, Holmes JD (2014) Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Res 7:1–62CrossRefGoogle Scholar
  29. 29.
    Wang YQ, Ding Y, Pan LJ, Shi Y, Yue ZH, Shi Y, Yu GH (2016) Understanding the size-dependent sodium storage properties of Na2C6O6-based organic electrodes for sodium-ion batteries. Nano Lett 16:3329–3334CrossRefGoogle Scholar
  30. 30.
    Liang YL, Tao ZL, Chen J (2012) Organic electrode materials for rechargeable lithium batteries. Adv Energy Mater 2:742–769CrossRefGoogle Scholar
  31. 31.
    Armand M, Grugeon S, Vezin H, Laruelle S, Ribiere P, Poizot P, Tarascon JM (2009) Conjugated dicarboxylate anodes for Li-ion batteries. Nat Mater 8:120–125CrossRefGoogle Scholar
  32. 32.
    Osiak M, Geaney H, Armstrong E, O’Dwyer C (2014) Structuring materials for lithium-ion batteries: advancements in nanomaterial structure, composition, and defined assembly on cell performance. J Mater Chem A 2:9433–9460CrossRefGoogle Scholar
  33. 33.
    Wu ZS, Ren WC, Wen L, Gao LB, Zhao JP, Chen ZP, Zhou GM, Li F, Cheng HM (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187–3194CrossRefGoogle Scholar
  34. 34.
    Kantam ML, Neelima B, Reddy CV, Chaudhuri MK, Dehury SK (2004) VO(acac)(2) supported on titania: a heterogeneous protocol for the selective oxidation of sulfides using TBHP. Catal Lett 95:19–22CrossRefGoogle Scholar
  35. 35.
    Sun X, Zhou CG, Xie M, Hu T, Sun HT, Xin GQ, Wang GK, George SM, Lian J (2014) Amorphous vanadium oxide coating on graphene by atomic layer deposition for stable high energy lithium ion anodes. Chem Commun 50:10703–10706CrossRefGoogle Scholar
  36. 36.
    Zhao KN, Liu FN, Niu CJ, Xu WW, Dong YF, Zhang L, Xie SM, Yan MY, Wei QL, Zhao DY, Mai LQ (2015) Graphene oxide wrapped amorphous copper vanadium oxide with enhanced capacitive behavior for high-rate and long-life lithium-ion battery anodes. Adv Sci 2:7Google Scholar
  37. 37.
    Pei J, Chen G, Zhang Q, Bie CF, Sun JX (2017) Phase separation derived core/shell structured Cu11V6O26/V2O5 microspheres: first synthesis and excellent lithium-ion anode performance with outstanding capacity self-restoration. Small 13:10CrossRefGoogle Scholar
  38. 38.
    Yang GZ, Cui H, Yang GW, Wang CX (2014) Self-assembly of Co3V2O8 multi layered nanosheets: controllable synthesis, excellent Li-storage properties, and investigation of electrochemical mechanism. ACS Nano 8:4474–4487CrossRefGoogle Scholar
  39. 39.
    Niu SZ, Lv W, Zhang C, Shi YT, Zhao JF, Li BH, Yang QH, Kang FY (2015) One-pot self-assembly of graphene/carbon nanotube/sulfur hybrid with three dimensionally interconnected structure for lithium-sulfur batteries. J Power Sources 295:182–189CrossRefGoogle Scholar
  40. 40.
    Grugeon S, Laruelle S, Dupont L, Tarascon JM (2003) An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Sci 5:895–904CrossRefGoogle Scholar
  41. 41.
    Zhou GM, Wang DW, Li F, Zhang LL, Li N, Wu ZS, Wen L, Lu GQ, Cheng HM (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22:5306–5313CrossRefGoogle Scholar
  42. 42.
    Shin JY, Samuelis D, Maier J (2011) Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates: emphasis on interfacial storage phenomena. Adv Funct Mater 21:3464–3472CrossRefGoogle Scholar
  43. 43.
    Wu D, Kuang Q, Zhao Y, Liu S, Fan Q (2018) Sol-gel synthesized carbon-coated vanadium borate as anode material for rechargeable Li and Na batteries. J Alloy Compd 732:506–510CrossRefGoogle Scholar
  44. 44.
    Yang G, Cui H, Yang G, Wang C (2014) Self-assembly of Co3V2O8 multilayered nanosheets: controllable synthesis, excellent Li-storage properties, and investigation of electrochemical mechanism. ACS Nano 8:4474–4487CrossRefGoogle Scholar
  45. 45.
    Kim W-T, Jeong YU, Lee YJ, Kim YJ, Song JH (2013) Synthesis and lithium intercalation properties of Li3VO4 as a new anode material for secondary lithium batteries. J Power Sources 244:557–560CrossRefGoogle Scholar
  46. 46.
    Sun Y, Li C, Wang L, Wang Y, Ma X, Ma P, Song M (2012) Ultralong monoclinic ZnV2O6 nanowires: their shape-controlled synthesis, new growth mechanism, and highly reversible lithium storage in lithium-ion batteries. RSC Adv 2:8110–8115CrossRefGoogle Scholar
  47. 47.
    Zeng L, Zheng C, Xi J, Fei H, Wei M (2013) Composites of V2O3–ordered mesoporous carbon as anode materials for lithium-ion batteries. Carbon 62:382–388CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process EngineeringChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations