Skip to main content

Synthesis of manganese oxide electrocatalysts in supercritical carbon dioxide

Abstract

In this work, a novel method of preparing manganese oxide nanoparticles from an organometallic precursor dissolved in supercritical carbon dioxide (sc CO2) was presented. Using the new approach, nanomaterials mostly consisting of manganese oxides in β-MnO2 and ε-MnO2 phases with small-sized (~ 40 nm) grains and low polydispersity index (~ 0.12) can be synthesized, which was consistently proved by means of thermogravimetric and X-ray diffraction analysis, scanning and transmission electron microscopy. Moreover, reasonable electrocatalytic activity of the obtained materials was detected by a rotating disk electrode method.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

References

  1. 1

    Brus L (1991) Quantum crystallites and nonlinear optics. Appl Phys A Solids Surf 53:465–474. https://doi.org/10.1007/BF00331535

    Article  Google Scholar 

  2. 2

    Setter N, Waser R (2000) Electroceramic materials. Acta Mater 48:151–178. https://doi.org/10.1016/S1359-6454(99)00293-1

    Article  Google Scholar 

  3. 3

    Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) Lithium-air battery: promise and challenges. J Phys Chem Lett 1:2193–2203. https://doi.org/10.1021/jz1005384

    Article  Google Scholar 

  4. 4

    Cheng F, Chen J (2012) Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev 41:2172. https://doi.org/10.1039/c1cs15228a

    Article  Google Scholar 

  5. 5

    Larminie J, Dicks A (2001) Fuel cell systems explained. Wiley, Chichester

    Google Scholar 

  6. 6

    Thackeray MM, Johnson CS, Vaughey JT, Li N, Hackney SA (2005) Advances in manganese-oxide “composite” electrodes for lithium-ion batteries. J Mater Chem 15:2257–2267. https://doi.org/10.1039/b417616m

    Article  Google Scholar 

  7. 7

    Mao L, Zhang D, Sotomura T, Nakatsu K, Koshiba N, Ohsaka T (2003) Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts. Electrochim Acta 48:1015–1021. https://doi.org/10.1016/S0013-4686(02)00815-0

    Article  Google Scholar 

  8. 8

    Kozawa A, Yeager JF (1965) The cathodic reduction mechanism of electrolytic manganese dioxide in alkaline electrolyte. J Electrochem Soc 112:959–963. https://doi.org/10.1149/1.2423350

    Article  Google Scholar 

  9. 9

    Yang CC, Hsu ST, Chien WC, Shih MC, Chiu SJ, Lee KT, Wang CL (2006) Electrochemical properties of air electrodes based on MnO2 catalysts supported on binary carbons. Int J Hydrog Energy 31:2076–2087. https://doi.org/10.1016/j.ijhydene.2006.02.008

    Article  Google Scholar 

  10. 10

    Poux T, Bonnefont A, Ryabova A, Kéranguéven G, Tsirlina GA, Savinova ER (2014) Electrocatalysis of hydrogen peroxide reactions on perovskite oxides: experiment versus kinetic modeling. Phys Chem Chem Phys 16:13595–13600. https://doi.org/10.1039/c4cp00341a

    Article  Google Scholar 

  11. 11

    Post JE (1999) Manganese oxide minerals: crystal structures and economic and environmental significance. Proc Natl Acad Sci 96:3447–3454. https://doi.org/10.1073/pnas.96.7.3447

    Article  Google Scholar 

  12. 12

    Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721. https://doi.org/10.1039/C0CS00127A

    Article  Google Scholar 

  13. 13

    Hong WT, Risch M, Stoerzinger KA, Grimaud A, Suntivich J, Shao-Horn Y (2013) Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ Sci 8:1404–1427. https://doi.org/10.1039/b000000x/

    Article  Google Scholar 

  14. 14

    Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y (2011) Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat Chem 3:546–550. https://doi.org/10.1038/nchem.1069

    Article  Google Scholar 

  15. 15

    Lima FHB, Calegaro ML, Ticianelli EA (2006) Investigations of the catalytic properties of manganese oxides for the oxygen reduction reaction in alkaline media. J Electroanal Chem 590:152–160. https://doi.org/10.1016/j.jelechem.2006.02.029

    Article  Google Scholar 

  16. 16

    Ryabova AS, Napolskiy FS, Poux T, Istomin SY, Bonnefont A, Antipin DM, Baranchikov AY, Levin EE, Abakumov AM, Kéranguéven G, Antipov EV, Tsirlina GA, Savinova ER (2016) Rationalizing the influence of the Mn(IV)/Mn(III) red-ox transition on the electrocatalytic activity of manganese oxides in the oxygen reduction reaction. Electrochim Acta 187:161–172

    Article  Google Scholar 

  17. 17

    Poux T, Napolskiy FS, Dintzer T, Kéranguéven G, Istomin SY, Tsirlina GA, Antipov EV, Savinova ER (2012) Dual role of carbon in the catalytic layers of perovskite/carbon composites for the electrocatalytic oxygen reduction reaction. Catal Today 189:83–92. https://doi.org/10.1016/j.cattod.2012.04.046

    Article  Google Scholar 

  18. 18

    Zhang K, Han X, Hu Z, Zhang X, Tao Z, Chen J (2015) Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem Soc Rev 44:699–728. https://doi.org/10.1039/c4cs00218k

    Article  Google Scholar 

  19. 19

    Wang X, Li Y (2002) Selected-control hydrothermal synthesis of α- and β-MnO2 single crystal nanowires. J Am Chem Soc 124:2880–2881. https://doi.org/10.1021/ja0177105

    Article  Google Scholar 

  20. 20

    Wu C, Xie Y, Wang D, Yang J, Li T (2003) Selected-control hydrothermal synthesis of γ-ΜnO2 3D nanostructures. J Phys Chem B 107:13583–13587. https://doi.org/10.1021/jp035567r

    Article  Google Scholar 

  21. 21

    Qiu G, Huang H, Dharmarathna S, Benbow E, Stafford L, Suib SL (2011) Hydrothermal synthesis of manganese oxide nanomaterials and their catalytic and electrochemical properties. Chem Mater 23:3892–3901. https://doi.org/10.1021/cm2011692

    Article  Google Scholar 

  22. 22

    Zhao J, Tao Z, Liang J, Chen J (2008) Facile synthesis of nanoporous γ-MnO2 structures and their application in rechargeable Li-ion batteries. Cryst Growth Des 8:2799–2805. https://doi.org/10.1021/cg701044b

    Article  Google Scholar 

  23. 23

    Wu M-S, Chiang P-CJ, Lee J-T, Lin J-C (2005) Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries. J Phys Chem B 109:23279–23284. https://doi.org/10.1021/jp054740b

    Article  Google Scholar 

  24. 24

    Ghaemi M, Khosravi-Fard L, Neshati J (2005) Improved performance of rechargeable alkaline batteries via surfactant-mediated electrosynthesis of MnO2. J Power Sources 141:340–350. https://doi.org/10.1016/j.jpowsour.2004.10.004

    Article  Google Scholar 

  25. 25

    Therese GHA, Kamath PV (2000) Electrochemical synthesis of metal oxides and hydroxides. Chem Mater 12:1195–1204. https://doi.org/10.1021/cm990447a

    Article  Google Scholar 

  26. 26

    Chou S, Cheng F, Chen J (2006) Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO2 films. J Power Sources 162:727–734. https://doi.org/10.1016/j.jpowsour.2006.06.033

    Article  Google Scholar 

  27. 27

    Cheng F, Su Y, Liang J, Tao Z, Chen J (2010) MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chem Mater 22:898–905. https://doi.org/10.1021/cm901698s

    Article  Google Scholar 

  28. 28

    Li Q, Olson JB, Penner RM (2004) Nanocrystalline α-MnO2 nanowires by electrochemical step-edge decoration. Chem Mater 16:3402–3405. https://doi.org/10.1021/cm049285v

    Article  Google Scholar 

  29. 29

    Ching S, Welch EJ, Hughes SM, Bahadoor ABF, Suib SL (2002) Nonaqueous sol–gel syntheses of microporous manganese oxides. Chem Mater 14:1292–1299. https://doi.org/10.1021/cm010780q

    Article  Google Scholar 

  30. 30

    Portehault D, Cassaignon S, Baudrin E, Jolivet JP (2007) Morphology control of cryptomelane type MnO2 nanowires by soft chemistry growth mechanisms in aqueous medium. Chem Mater 19:5410–5417. https://doi.org/10.1021/cm071654a

    Article  Google Scholar 

  31. 31

    Xiao W, Wang D, Lou XW (2010) Shape-controlled synthesis of MnO2 nanostructures with enhanced electrocatalytic activity for oxygen reduction. J Phys Chem C 114:1694–1700. https://doi.org/10.1021/jp909386d

    Article  Google Scholar 

  32. 32

    Wang X, Li Y (2002) Rational synthesis of α-MnO2 single-crystal nanorods. Chem Commun 7:764–765. https://doi.org/10.1039/B111723H

    Article  Google Scholar 

  33. 33

    Oaki Y, Imai H (2007) One-pot synthesis of manganese oxide nanosheets in aqueous solution: chelation-mediated parallel control of reaction and morphology. Angew Chem Int Ed 46:4951–4955. https://doi.org/10.1002/anie.200700244

    Article  Google Scholar 

  34. 34

    Portehault D, Cassaignon S, Baudrin E, Jolivet J-P (2009) Structural and morphological control of manganese oxide nanoparticles upon soft aqueous precipitation through MnO4 /Mn2+ reaction. J Mater Chem 19:2407. https://doi.org/10.1039/b816348k

    Article  Google Scholar 

  35. 35

    Niederberger M, Garnweitner G (2006) Organic reaction pathways in the nonaqueous synthesis of metal oxide nanoparticles. Chem Eur J 12:7282–7302. https://doi.org/10.1002/chem.200600313

    Article  Google Scholar 

  36. 36

    Chaudret B (2005) Organometallic approach to nanoparticles synthesis and self-organization. C R Phys 6:117–131. https://doi.org/10.1016/j.crhy.2004.11.008

    Article  Google Scholar 

  37. 37

    Willis AL, Chen Z, He J, Zhu Y, Turro NJ, O’Brien S (2007) Metal acetylacetonates as general precursors for the synthesis of early transition metal oxide nanomaterials. J Nanomater 2007:1–7. https://doi.org/10.1155/2007/14858

    Article  Google Scholar 

  38. 38

    Djerdj I, Arčon D, Jagličić Z, Niederberger M (2007) Nonaqueous synthesis of manganese oxide nanoparticles, structural characterization, and magnetic properties. J Phys Chem C 111:3614–3623. https://doi.org/10.1021/jp067302t

    Article  Google Scholar 

  39. 39

    Niederberger M, Garnweitner G, Buha J, Polleux J, Ba J, Pinna N (2006) Nonaqueous synthesis of metal oxide nanoparticles: review and indium oxide as case study for the dependence of particle morphology on precursors and solvents. J Sol Gel Sci Technol 40:259–266. https://doi.org/10.1007/s10971-006-6668-8

    Article  Google Scholar 

  40. 40

    Bessergenev VG, Pereira RJF, Botelho do Rego AM (2007) Thin film sulphides and oxides of 3d metals prepared from complex precursors by CVD. Surf Coat Technol 201:9141–9145. https://doi.org/10.1016/j.surfcoat.2007.05.017

    Article  Google Scholar 

  41. 41

    Neishi K, Aki S, Matsumoto K, Sato H, Itoh H, Hosaka S, Koike J (2008) Formation of a manganese oxide barrier layer with thermal chemical vapor deposition for advanced large-scale integrated interconnect structure. Appl Phys Lett 93:2–5. https://doi.org/10.1063/1.2963984

    Article  Google Scholar 

  42. 42

    Nakaso K, Han B, Ahn KH, Choi M, Okuyama K (2003) Synthesis of non-agglomerated nanoparticles by an electrospray assisted chemical vapor deposition (ES-CVD) method. J Aerosol Sci 34:869–881. https://doi.org/10.1016/S0021-8502(03)00053-3

    Article  Google Scholar 

  43. 43

    Merritt AR, Rajagopalan R, Carter JD (2014) Synthesis of electro-active manganese oxide thin films by plasma enhanced chemical vapor deposition. Thin Solid Films 556:28–34. https://doi.org/10.1016/j.tsf.2013.12.054

    Article  Google Scholar 

  44. 44

    Ju SH, Kim DY, Koo HY, Hong SK, Jo EB, Kang YC (2006) The characteristics of nano-sized manganese oxide particles prepared by spray pyrolysis. J Alloys Compd 425:411–415. https://doi.org/10.1016/j.jallcom.2006.01.064

    Article  Google Scholar 

  45. 45

    Kondratenko MS, Elmanovich IV, Gallyamov MO (2017) Polymer materials for electrochemical applications: processing in supercritical fluids. J Supercrit Fluids. https://doi.org/10.1016/j.supflu.2017.03.011

    Google Scholar 

  46. 46

    Smart NG, Carleson T, Kast T, Clifford AA, Burford MD, Wai CM (1997) Solubility of chelating agents and metal-containing compounds in supercritical fluid carbon dioxide. Talanta 44:137–150. https://doi.org/10.1016/S0039-9140(96)02008-5

    Article  Google Scholar 

  47. 47

    Gupta RB, Shim J-J (2007) Solubility in supercritical carbon dioxide. Taylor & Francis Group, New York

    Google Scholar 

  48. 48

    Fedotov AN, Simonov AP, Popov VK, Bagratashvili VN (1997) Dielectrometry in supercritical fluids. a new approach to the measurement of solubility and study of dipole moment behavior of polar compounds. J Phys Chem B 102:2929–2932. https://doi.org/10.1021/jp962223a

    Article  Google Scholar 

  49. 49

    Bayrakceken A, Kitkamthorn U, Aindow M, Erkey C (2007) Decoration of multi-wall carbon nanotubes with platinum nanoparticles using supercritical deposition with thermodynamic control of metal loading. Scr Mater 56:101–103. https://doi.org/10.1016/j.scriptamat.2006.09.019

    Article  Google Scholar 

  50. 50

    Zhang Y, Kang D, Saquing C, Aindow M, Erkey C (2005) Supported platinum nanoparticles by supercritical deposition. Ind Eng Chem Res 44:4161–4164. https://doi.org/10.1021/ie050345w

    Article  Google Scholar 

  51. 51

    Zhang Y, Erkey C (2006) Preparation of supported metallic nanoparticles using supercritical fluids: a review. J Supercrit Fluids 38:252–267. https://doi.org/10.1016/j.supflu.2006.03.021

    Article  Google Scholar 

  52. 52

    Said-Galiyev EE, Nikolaev AY, Levin EE, Lavrentyeva EK, Gallyamov MO, Polyakov SN, Tsirlina GA, Petrii OA, Khokhlov AR (2011) Structural and electrocatalytic features of Pt/C catalysts fabricated in supercritical carbon dioxide. J Solid State Electrochem 15:623–633. https://doi.org/10.1007/s10008-010-1169-7

    Article  Google Scholar 

  53. 53

    Layfield RA (2008) Manganese (II): the black sheep of the organometallic family. Chem Soc Rev 37:1098–1107. https://doi.org/10.1039/b708850g

    Article  Google Scholar 

  54. 54

    Saito N, Ikushima Y, Goto T (1990) Liquid/solid extraction of acetylacetone chelates with supercritical carbon dioxide. Bull Chem Soc Jpn 63:1532–1534. https://doi.org/10.1246/bcsj.63.1532

    Article  Google Scholar 

  55. 55

    Khatipov SA, Serov SA, Sadovskaya NV, Konova EM (2012) Morphology of polytetrafluoroethylene before and after irradiation. Radiat Phys Chem 81:256–263. https://doi.org/10.1016/j.radphyschem.2011.10.018

    Article  Google Scholar 

  56. 56

    http://webbook.nist.gov/chemistry/fluid/. Accessed Dec 2017

  57. 57

    Parida KM, Kanungo SB (1983) Thermal decomposition characteristics in air and their relationship with electrochemical activity of different polymorphic forms of MnO2. Thermochim Acta 66:275–287. https://doi.org/10.1016/0040-6031(93)85038-B

    Article  Google Scholar 

  58. 58

    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

    Article  Google Scholar 

  59. 59

    Hackley VA, Clogston JD (2011) Measuring the hydrodynamic size of nanoparticles in aqueous media using batch-mode dynamic light scattering. In: McNeil SE (ed) Characterization of nanoparticles intended for drug delivery. Humana Press, New York, pp 35–52. https://doi.org/10.1007/978-1-60327-198-1_4

    Chapter  Google Scholar 

  60. 60

    Levin E, Treninkov I, Polyakov S (2011) Moving crystal assembly for handling small bulk samples. J Appl Crystallogr 44:1291–1293. https://doi.org/10.1107/S0021889811039537

    Article  Google Scholar 

  61. 61

    http://www.icdd.com/products/pdf4.htm. Accessed Dec 2017

  62. 62

    Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71. https://doi.org/10.1107/S0021889869006558

    Article  Google Scholar 

  63. 63

    Solovyov LA (2004) Full-profile refinement by derivative difference minimization. J Appl Crystallogr 37:743–749. https://doi.org/10.1107/S0021889804015638

    Article  Google Scholar 

  64. 64

    Suntivich J, Gasteiger HA, Yabuuchi N, Shao-Horn Y (2010) electrocatalytic measurement methodology of oxide catalysts using a thin-film rotating disk electrode. J Electrochem Soc 157:B1263–B1268. https://doi.org/10.1149/1.3456630

    Article  Google Scholar 

  65. 65

    Allen T (2003) Powder sampling and particle size determination. Elsevier, Amsterdam

    Google Scholar 

  66. 66

    Geller S (1971) Structure of α-Mn2O3, (Mn0.983Fe0.017)2O3 and (Mn0.37Fe0.63)2O3 and relation to magnetic ordering. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 27:821–828. https://doi.org/10.1107/S0567740871002966

    Article  Google Scholar 

  67. 67

    Stoerzinger KA, Risch M, Han B, Shao-Horn Y (2015) Recent insights into manganese oxides in catalyzing oxygen reduction kinetics. ACS Catal 5:6021–6031. https://doi.org/10.1021/acscatal.5b01444

    Article  Google Scholar 

  68. 68

    Wang X, Yang Z, Zhang Y, Jing L, Zhao Y, Yan Y, Sun K (2014) MnO2 supported Pt nanoparticels with high electrocatalytic activity for oxygen reduction reaction. Fuel Cells 14:35–41. https://doi.org/10.1002/fuce.201300102

    Google Scholar 

  69. 69

    Zhao JC, Wang J, Xu JL (2015) Synthesis and electrochemical characterization of mesoporous MnO2. J Chem 2015:1–6. https://doi.org/10.1155/2015/768023

    Google Scholar 

  70. 70

    Kéranguéven G, Ulhaq-Bouillet C, Papaefthimiou V, Royer S, Savinova E (2017) Perovskite-carbon composites synthesized through in situ autocombustion for the oxygen reduction reaction: the carbon effect. Electrochim Acta 245:156–164. https://doi.org/10.1016/j.electacta.2017.05.113

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor G.A. Tsirlina from the Lomonosov Moscow State University for her valuable guidance in electrochemical experiments and discussion of the results. Research reported in this publication (in the parts of V.V.Z., S.S.A, M.S.K., M.O.G contributions) was supported by Centre for Electrochemical Energy of Skolkovo Institute of Science and Technology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. V. Zefirov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 278 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zefirov, V.V., Elmanovich, I.V., Levin, E.E. et al. Synthesis of manganese oxide electrocatalysts in supercritical carbon dioxide. J Mater Sci 53, 9449–9462 (2018). https://doi.org/10.1007/s10853-018-2242-3

Download citation

Keywords

  • Manganese Oxide
  • Organometallic Precursors
  • Rotating Disk Electrode Method
  • Carbon Binding
  • Cyclopentadienylmanganese Tricarbonyl