Journal of Materials Science

, Volume 53, Issue 13, pp 9393–9400 | Cite as

Electric field–temperature phase diagram of sodium bismuth titanate-based relaxor ferroelectrics

  • Florian Weyland
  • Matias Acosta
  • Malte Vögler
  • Yoshitaka Ehara
  • Jürgen Rödel
  • Nikola Novak


The electric field–temperature phase diagrams of three bismuth sodium titanate-based relaxor ferroelectrics are reported, namely 0.94(Na1/2Bi1/2TiO3)–0.06(BaTiO3), 0.80(Na1/2Bi1/2TiO3)–0.20(K1/2Bi1/2TiO3) and 0.75(Na1/2Bi1/2TiO3)–0.25(SrTiO3). Relaxor behavior is demonstrated by temperature-dependent dielectric permittivity measurements in the unpoled and poled states, as well as by the field-induced phase transition into a ferroelectric phase from the relaxor phase. From temperature-dependent thermometry measurements, we identified the threshold electric field to induce the ferroelectric phase and obtained the released latent heat of the phase transition. We determined the nonergodic and ergodic relaxor phase temperature range based on the absence or presence of reversibility of the relaxor to ferroelectric transition. For all three compositions, the electric field–temperature phase diagram was constructed and a critical point was identified. The constructed electric field–temperature phase diagrams are useful to find optimum operational ranges of ferroelectrics and relaxors for electromechanical and electrocaloric applications.



This work was financed by the Deutsche Forschungsgemeinschaft (DFG) under the SPP 1599, Project No. 1221/2-1. Malte Vögler acknowledges support under the DFG Grant No. RO954/25.

Compliance with ethical standards

Conflict of interest

There are no conflicts to declare.


  1. 1.
    Rödel J, Jo W, Seifert KTP, Anton E-M, Granzow T, Damjanovic D (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92(6):1153–1177. CrossRefGoogle Scholar
  2. 2.
    Jo W, Dittmer R, Acosta M, Zang J, Groh C, Sapper E, Wang K, Rödel J (2012) Giant electric-field-induced strains in lead-free ceramics for actuator applications—status and perspective. J Electroceram 29(1):71–93. CrossRefGoogle Scholar
  3. 3.
    Rödel J, Webber KG, Dittmer R, Jo W, Kimura M, Damjanovic D (2015) Transferring lead-free piezoelectric ceramics into application. J Eur Ceram Soc 35(6):1659–1681. CrossRefGoogle Scholar
  4. 4.
    Hussain A, Ahn CW, Lee JS, Ullah A, Kim IW (2010) Large electric-field-induced strain in Zr-modified lead-free Bi0.5(Na0.78K0.22)0.5TiO3 piezoelectric ceramics. Sens Actuators A 158(1):84–89. CrossRefGoogle Scholar
  5. 5.
    Ye Z-G, Schmid H (1993) Optical, dielectric and polarization studies of the electric field-induced phase transition in Pb(Mg1/3Nb2/3)O3 [PMN]. Ferroelectrics 145(1):83–108. CrossRefGoogle Scholar
  6. 6.
    Bobnar V, Kutnjak Z, Pirc R, Levstik A (1999) Electric-field–temperature phase diagram of the relaxor ferroelectric lanthanum-modified lead zirconate titanate. Phys Rev B 60(9):6420–6427CrossRefGoogle Scholar
  7. 7.
    Ehara Y, Novak N, Ayrikyan A, Geiger PT, Webber KG (2016) Phase transformation induced by electric field and mechanical stress in Mn-doped (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 ceramics. J Appl Phys 120(17):1–7. CrossRefGoogle Scholar
  8. 8.
    Jo W, Granzow T, Aulbach E, Rödel J, Damjanovic D (2009) Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoceramics. J Appl Phys 105(9):1–5. CrossRefGoogle Scholar
  9. 9.
    Ye Z-G (1996) Relaxor ferroelectric Pb(Mg1/3Nb2/3)O3: properties and present understanding. Ferroelectrics 184(1):193–208. CrossRefGoogle Scholar
  10. 10.
    Novak N, Pirc R, Wencka M, Kutnjak Z (2012) High-resolution calorimetric study of Pb(Mg1/3Nb2/3)O3 single crystal. Phys Rev Lett 109(3):1–5. CrossRefGoogle Scholar
  11. 11.
    Kutnjak Z, Petzelt J, Blinc R (2006) The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature 441(7096):956–959. CrossRefGoogle Scholar
  12. 12.
    Weyland F, Acosta M, Koruza J, Breckner P, Rödel J, Novak N (2016) Criticality: concept to enhance the piezoelectric and electrocaloric properties of ferroelectrics. Adv Func Mater 26(40):7326–7333. CrossRefGoogle Scholar
  13. 13.
    Porta M, Lookman T, Saxena A (2010) Effects of criticality and disorder on piezoelectric properties of ferroelectrics. J Phys Condens Matter 22(34):1–14. CrossRefGoogle Scholar
  14. 14.
    Rožič B, Kosec M, Uršič H, Holc J, Malič B, Zhang QM, Blinc R, Pirc R, Kutnjak Z (2011) Influence of the critical point on the electrocaloric response of relaxor ferroelectrics. J Appl Phys 110(6):1–5. Google Scholar
  15. 15.
    Liu Y, Scott JF, Dkhil B (2016) Direct and indirect measurements on electrocaloric effect: recent developments and perspectives. Appl Phys Rev 3(3):1–18. CrossRefGoogle Scholar
  16. 16.
    Park S-E, Hong KS (1997) Variations of structure and dielectric properties on substituting A-site cations for Sr2+ in (Na1/2Bi1/2)TiO3. J Mater Res 12(8):2152–2157CrossRefGoogle Scholar
  17. 17.
    Hiruma Y, Imai Y, Watanabe Y, Nagata H, Takenaka T (2008) Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3–SrTiO3 ferroelectric ceramics. Appl Phys Lett 92(26):1–3. CrossRefGoogle Scholar
  18. 18.
    Sapper E, Novak N, Jo W, Granzow T, Rödel J (2014) Electric-field–temperature phase diagram of the ferroelectric relaxor system (1 − x)Bi1/2Na1/2TiO3 − xBaTiO3 doped with manganese. J Appl Phys 115(19):1–7. CrossRefGoogle Scholar
  19. 19.
    Ehara Y, Novak N, Yasui S, Itoh M, Webber KG (2015) Electric-field-temperature phase diagram of Mn-doped Bi0.5(Na0.9K0.1)0.5TiO3 ceramics. Appl Phys Lett 107(26):1–5. CrossRefGoogle Scholar
  20. 20.
    Acosta M, Jo W, Rödel J (2014) Temperature- and frequency-dependent properties of the 0.75Bi1/2Na1/2TiO3–0.25SrTiO3lead-free incipient piezoceramic. J Am Ceram Soc 97(6):1937–1943. CrossRefGoogle Scholar
  21. 21.
    Kutnjak Z, Rožič B, Pirc R (2015) Electrocaloric effect: theory, measurements, and applications. Wiley encyclopedia of electrical and electronics engineering. Wiley, HobokenGoogle Scholar
  22. 22.
    Samara GA, Venturini EL (2006) Ferroelectric/relaxor crossover in compositionally disordered perovskites. Phase Transit 79(1–2):21–40. CrossRefGoogle Scholar
  23. 23.
    Jo W, Schaab S, Sapper E, Schmitt LA, Kleebe H-J, Bell AJ, Rödel J (2011) On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3–6 mol% BaTiO3. J Appl Phys 110(7):1–9. CrossRefGoogle Scholar
  24. 24.
    Ma C, Tan X (2010) Phase diagram of unpoled lead-free—ceramics. Solid State Commun 150(33–34):1497–1500. CrossRefGoogle Scholar
  25. 25.
    Jo W, Daniels J, Damjanovic D, Kleemann W, Rödel J (2013) Two-stage processes of electrically induced-ferroelectric to relaxor transition in 0.94(Bi1/2Na1/2)TiO3–0.06BaTiO3. Appl Phys Lett 102(19):1–4. CrossRefGoogle Scholar
  26. 26.
    Anjali K, Ajithkumar TG, Joy PA (2015) Correlations between structure, microstructure, density and dielectric properties of the lead-free ferroelectrics Bi0.5(Na, K)0.5TiO3. J Adv Dielectr 05(04):1550028. CrossRefGoogle Scholar
  27. 27.
    Sasaki A, Chiba T, Mamiya Y, Otsuki E (1999) Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 Systems. Jpn J Appl Phys 38:5564–5567CrossRefGoogle Scholar
  28. 28.
    Novak N, Pirc R, Kutnjak Z (2013) Diffuse critical point in PLZT ceramics. EPL 102(1):1–5. CrossRefGoogle Scholar
  29. 29.
    Sullivan PF, Seidel G (1968) Steady-state, ac-temperature calorimetry. Phys Rev 173(3):679–685CrossRefGoogle Scholar
  30. 30.
    Peräntie J, Hagberg J, Uusimäki A, Jantunen H (2009) Field-induced thermal response and irreversible phase transition enthalpy change in Pb(Mg1/3Nb2/3)O3–PbTiO3. Appl Phys Lett 94(10):1–3. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Materials and Earth ScienceTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Institute Jožef StefanLjubljanaSlovenia

Personalised recommendations