Skip to main content
Log in

The formation of Fe–Ga–In nanocomposite particles using mechanochemical interaction of Fe with the Ga–In eutectic

  • Mechanochemical Synthesis
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mechanochemical interaction of Fe powder with the liquid Ga–In eutectic in the Fe-rich concentration corner of the Fe–Ga–In phase diagram was studied and compared with binary Fe–Ga and Fe–In specimens. Slow formation of diluted solid solutions in the Fe–In system was confirmed. In the Fe–Ga system, the dominant concentrated A2 solid solution is formed with Heff = 236 kOe, accompanied by ordered D03 and L12 phases. The Fe–Ga–In system features a stationary equilibrium between the concentrated A2 phase and D03 in the iron matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kharisov BI, Rasika Dias HV, Kharissova OV, Manuel Jimenez-Perez V, Olvera Perez B, Munoz Flores B (2012) Iron-containing nanomaterials: synthesis, properties, and environmental applications. RSC Adv 2(25):9325–9358. https://doi.org/10.1039/C2RA20812A

    Article  Google Scholar 

  2. Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501. https://doi.org/10.1002/smll.200500006

    Article  Google Scholar 

  3. Lomovskii OI (ed) (2010) Mechanocomposites-precursors for production materials with new properties. Sibir. Otd. Ross. Akad. Nauk, Novosibirsk (in Russian). https://books.google.ru/books?id=sSIBDgAAQBAJ&dq=978-5-7692-1108-9

  4. Kiseleva T, Zholudev S, Novakova A, Grigoryeva T (2016) The enhanced magnetodeformational effect in Galfenol/polyurethane nanocomposites by the arrangement of particle chains. Compos Struct 138:12–16. https://doi.org/10.1016/j.compstruct.2015.11.030

    Article  Google Scholar 

  5. Atulasimha J, Flatau AB (2011) A review of magnetostrictive iron–gallium alloys. Smart Mater Struct 20:043001. https://doi.org/10.1088/0964-1726/20/4/043001

    Article  Google Scholar 

  6. Petculescu G, Wu R, McQueeney R (2012) Magnetoelasticity of bcc Fe–Ga alloys. In: Buschow KHJ (ed) Handbook of magnetic materials, vol 20. Elsevier, Amsterdam, pp 123–226. https://doi.org/10.1016/B978-0-444-56371-2.00003-9

    Google Scholar 

  7. Dai L, Cullen J, Wuttig M, Lograsso T, Quandt E (2003) Magnetism, elasticity, and magnetostriction of FeCoGa alloys. J Appl Phys 93(10):8627–8629. https://doi.org/10.1063/1.1555980

    Article  Google Scholar 

  8. Clark AE, Restorff JB, Wun-Fogle M, Lograsso TA, Schlagel DL (2000) Magnetostrictive properties of body-centered cubic Fe–Ga and Fe–Ga–Al alloys. IEEE Trans Magn 36(5):3238–3240. https://doi.org/10.1109/20.908752

    Article  Google Scholar 

  9. Petculescu G, Ledet KL, Huang M, Lograsso TA, Zhang YN, Wu RQ, Wun-Fogle M, Restorff JB, Clark AE, Hathaway KB (2011) Magnetostriction, elasticity, and D03 phase stability in Fe–Ga and Fe–Ga–Ge alloys. J Appl Phys 109(7):07A904. https://doi.org/10.1063/1.3535444

    Article  Google Scholar 

  10. Restorff JB, Wun-Fogle M, Hathaway KB, Clark AE, Lograsso TA, Petculescu G (2012) Tetragonal magnetostriction and magnetoelastic coupling in Fe–Al, Fe–Ga, Fe–Ge, Fe–Si, Fe–Ga–Al, and Fe–Ga–Ge alloys. J Appl Phys 111(2):023905. https://doi.org/10.1063/1.3674318

    Article  Google Scholar 

  11. Lograsso TA, Summers EM (2006) Detection and quantification of D03 chemical order in Fe–Ga alloys using high resolution X-ray diffraction. Mater Sci Eng A 416(1–2):240–245. https://doi.org/10.1016/j.msea.2005.10.035

    Article  Google Scholar 

  12. Borrego JM, Blázquez JS, Conde CF, Conde A, Roth S (2007) Structural ordering and magnetic properties of arc-melted FeGa alloys. Intermetallics 15(2):193–200. https://doi.org/10.1016/j.intermet.2006.05.007

    Article  Google Scholar 

  13. Cao H, Bai F, Li J, Viehland DD, Lograsso TA, Gehring PM (2008) Structural studies of decomposition in Fe–x at.%Ga alloys. J Alloys Compd 465(1–2):244–249. https://doi.org/10.1016/j.jallcom.2007.10.080

    Article  Google Scholar 

  14. Javed A, Morley NA, Szumiata T, Gibbs MRJ (2011) A comparative study of the microstructural and magnetic properties of textured thin polycrystalline Fe100−xGax (10 ≤ x ≤ 35) films. Appl Surf Sci 257(14):5977–5983. https://doi.org/10.1016/j.apsusc.2011.01.079

    Article  Google Scholar 

  15. Butera A, Weston JL, Barnard JA (2004) Ferromagnetic resonance of epitaxial thin films Fe81Ga19(110) thin films. J Magn Magn Mater 284:17–25. https://doi.org/10.1016/j.jmmm.2004.06.015

    Article  Google Scholar 

  16. Iselt D, Gaitzsch U, Oswald S, Fähler S, Schultz L, Schlörb H (2011) Electrodeposition and characterization of Fe80Ga20 alloy films. Electrochim Acta 56(14):5178–5183. https://doi.org/10.1016/j.electacta.2011.03.046

    Article  Google Scholar 

  17. Reddy KSM, Estrine EC, Lim D-H, Smyrl WH, Stadler BJH (2012) Controlled electrochemical deposition of magnetostrictive Fe1−xGax alloys. Electrochem Commun 18:127–130. https://doi.org/10.1016/j.elecom.2012.02.039

    Article  Google Scholar 

  18. Ranchal R, Fin S, Bisero D (2015) Magnetic microstructures in electrodeposited Fe1−xGax thin films (15 ≤ x ≤ 22 at.%). J Phys D Appl Phys 48(7):075001. https://doi.org/10.1088/0022-3727/48/7/075001

    Article  Google Scholar 

  19. Gaudet JM, Hatchard TD, Farrell SP, Dunlap RA (2008) Properties of Fe–Ga based powders prepared by mechanical alloying. J Magn Magn Mater 320(6):821–829. https://doi.org/10.1016/j.jmmm.2007.08.029

    Article  Google Scholar 

  20. Grigor’eva TF, Kiseleva TY, Kovaleva SA, Novakova AA, Tsybulya SV, Barinova AP, Lyakhov NZ (2012) Study of the products of interaction between iron and gallium during mechanical activation. Phys Metals Metallogr 113(6):575–582. https://doi.org/10.1134/s0031918x12060075

    Article  Google Scholar 

  21. Boldyrev VV (2006) Mechanochemistry and mechanical activation of solids. Russ Chem Rev 75(3):177–189. https://doi.org/10.1070/RC2006v075n03ABEH001205

    Article  Google Scholar 

  22. Grigorieva TF, Barinova AP, Lyakhov NZ (2003) Mechanosynthesis of nanocomposites. J Nanopart Res 5(5–6):439–453. https://doi.org/10.1023/B:NANO.0000006093.26430.3b

    Article  Google Scholar 

  23. Lyakhov N, Grigorieva T, Barinova A, Lomayeva S, Yelsukov E, Ulyanov A (2004) Nanosized mechanocomposites and solid solution in immiscible metal systems. J Mater Sci 39(16–17):5421–5423. https://doi.org/10.1023/B:JMSC.0000039258.56606.55

    Article  Google Scholar 

  24. Kiseleva TY, Novakova AA, Grigorieva TF, Barinova AP (2004) Iron and indium interactions during mechanical attrition. J Alloys Compd 383(1–2):94–97. https://doi.org/10.1016/j.jallcom.2004.04.015

    Article  Google Scholar 

  25. Novakova AA, Grigorieva TF, Barinova AP, Kiseleva TY, Lyakhov NZ (2007) Fe (In) solid solution formation during mechanical attrition. J Alloys Compd 434–435:455–458. https://doi.org/10.1016/j.jallcom.2006.08.102

    Article  Google Scholar 

  26. Kiseleva TY, Levin EE, Novakova AA, Kovaleva SA, Grigorieva TF, Barinova AP, Lyakhov NZ (2011) Interaction between iron and liquid gallium in the course of intensive mechanical activation. In: Tenth Russian-Israeli Bi-national workshop “The optimization of the composition, structure and properties of metals, oxides, composites, nano and amorphous materials”, Jerusalem, 20–23 June 2011. pp 1–9

  27. Grigorieva TF, Barinova AP, Lyakhov NZ (2001) Mechanochemical synthesis of intermetallic compounds. Russ Chem Rev 70(1):45–63. https://doi.org/10.1070/RC2001v070n01ABEH000598

    Article  Google Scholar 

  28. Grigoreva TF, Ancharov AI, Barinova AP, Tsybulya SV, Lyakhov NZ (2009) Structural transformations upon the mechanochemical interaction between solid and liquid metals. Phys Metals Metallogr 107(5):457–465. https://doi.org/10.1134/S0031918X09050068

    Article  Google Scholar 

  29. Grigoreva TF, Ancharov AI, Pindyurin VF, Barinova AP, Boldyrev VV (2008) Phase transformation sequence during interaction mechanochemically synthesized solid solution with liquid eutectics. Rev Adv Mater Sci 18(8):716–719

    Google Scholar 

  30. Glickman EE (2000) Mechanism of liquid metal embrittlement by simple experiments: from atomistics to life-time. In: Lépinoux J, Mazière D, Pontkis V, Saada G (eds) Multiscale phenomena in plasticity: from experiments to phenomenology, modelling and materials engineering, vol 367. Springer, Dordrecht, pp 383–402. https://doi.org/10.1007/978-94-011-4048-5_30

    Chapter  Google Scholar 

  31. Rabkin E (2000) Grain boundary embrittlement by liquid metals. In: Lépinoux J, Mazière D, Pontkis V, Saada G (eds) Multiscale phenomena in plasticity: from experiments to phenomenology, modelling and materials engineering, vol 367. Springer, Dordrecht, pp 403–414. https://doi.org/10.1007/978-94-011-4048-5_31

    Chapter  Google Scholar 

  32. Rusakov VS, Chistyakova NI (1992) Mossbauer program complex MSTools. In: Latin American conference on the application of the Mössbauer effect (LACAME’92), Argentina, 5–9, October, 1992, pp 7–3

  33. Rusakov VS, Kadyrzhanov KK (2005) Mössbauer spectroscopy of locally inhomogeneous systems. Hyperfine Interact 164(1–4):87–97. https://doi.org/10.1007/s10751-006-9236-2

    Google Scholar 

  34. Wertheim GK, Jaccarino V, Wernick JH, Buchanan DNE (1964) Range of the exchange interaction in iron alloys. Phys Rev Lett 12(1):24–27. https://doi.org/10.1103/PhysRevLett.12.24

    Article  Google Scholar 

  35. ICDD PDF-2 (2017) http://www.icdd.com/products/pdf2.htm. Accessed November 2017

  36. Rietveld H (1969) A profile refinement method for nuclear and magnetic structures. J Appl Cryst 2(2):65–71. https://doi.org/10.1107/S0021889869006558

    Article  Google Scholar 

  37. Solovyov L (2004) Full-profile refinement by derivative difference minimization. J Appl Cryst 37(5):743–749. https://doi.org/10.1107/S0021889804015638

    Article  Google Scholar 

  38. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675. https://doi.org/10.1038/nmeth.2089

    Article  Google Scholar 

  39. Okamoto H (2004) Fe–Ga (iron-gallium). J Phase Equilib Diffus 25(1):100. https://doi.org/10.1007/s11669-004-0187-5

    Article  Google Scholar 

  40. Okamoto H (1990) The Fe–In (iron–indium) system. Bull Alloy Phase Diagrams 11(2):143–146. https://doi.org/10.1007/BF02841698

    Article  Google Scholar 

  41. Anderson TJ, Ansara I (1991) The Ga–In (gallium–indium) system. J Phase Equilib 12(1):64–72. https://doi.org/10.1007/BF02663677

    Article  Google Scholar 

  42. Lima-de-Faria J (2002) Structural classification and notation. In: Westbrook JH, Fleischer RL (eds) Intermetallic compounds—principle and practice, vol 3: Progress. Wiley, Chichester, pp 3–20. https://doi.org/10.1002/0470845856.ch1

    Chapter  Google Scholar 

  43. Khmelevska T, Khmelevskyi S, Mohn P (2008) Magnetism and structural ordering on a bcc lattice for highly magnetostrictive Fe–Ga alloys: a coherent potential approximation study. J Appl Phys 103(7):073911. https://doi.org/10.1063/1.2903071

    Article  Google Scholar 

  44. Miedema AR, de Boer FR, Boom R (1977) Model predictions for the enthalpy of formation of transition metal alloys. Calphad 1(4):341–359. https://doi.org/10.1016/0364-5916(77)90011-6

    Article  Google Scholar 

  45. Egerton RF (2016) Physical principles of electron microscopy, 2nd edn. Springer, Cham. https://doi.org/10.1007/978-3-319-39877-8

    Book  Google Scholar 

  46. König R, Müller S, Dinnebier RE, Müller P, Ribbens A, Hwang J, Liebscher R, Etter M, Pistidda C (2017) The crystal structures of carbonyl iron powder—revised using in situ synchrotron XRPD. Z Kristallogr 232(12):835–842. https://doi.org/10.1515/zkri-2017-2067

    Google Scholar 

  47. Mathalone Z, Ron M, Pipman J, Niedzwiedz S (1971) Mössbauer characteristics of ε, χ, and θ iron carbides. J Appl Phys 42(2):687–695. https://doi.org/10.1063/1.1660082

    Article  Google Scholar 

  48. O’Donnell K, Rao X-L, Laird G, Coey JMD (1996) Metastable iron nitrides by mechanical alloying. Phys Status Solidi A 153(1):223–231. https://doi.org/10.1002/pssa.2211530122

    Article  Google Scholar 

  49. Palacheva VV, Emdadi A, Emeis F, Bobrikov IA, Balagurov AM, Divinski SV, Wilde G, Golovin IS (2017) Phase transitions as a tool for tailoring magnetostriction in intrinsic Fe–Ga composites. Acta Mater 130:229–239. https://doi.org/10.1016/j.actamat.2017.03.049

    Article  Google Scholar 

  50. Swanson HE, Fuyat RK, Ugrinic GM (1956) Standard X-Ray diffraction powder patterns, vol IV. National Bureau of Standards Circular 539. U. S. Dept. of Commerce, National Bureau of Standards, Washington

  51. Nishino Y, Matsuo M, Asano S, Kawamiya N (1991) Stability of the DO3 phase in (Fe1−xMx)3Ga (M; 3d transition metals). Scr Metall Mater 25(10):2291–2296. https://doi.org/10.1016/0956-716X(91)90017-U

    Article  Google Scholar 

  52. Gleiter H (1992) Materials with ultrafine microstructures: retrospectives and perspectives. Nanostruct Mater 1:1–19. https://doi.org/10.1016/0965-9773(92)90045-Y

    Article  Google Scholar 

  53. Kim HS, Estrin Y, Bush MB (2000) Plastic deformation behaviour of fine-grained materials. Acta Mater 48(2):493–504. https://doi.org/10.1016/S1359-6454(99)00353-5

    Article  Google Scholar 

  54. McCormick PG, Froes FH (1998) The fundamentals of mechanochemical processing. JOM 50(11):61–65. https://doi.org/10.1007/s11837-998-0290-x

    Article  Google Scholar 

  55. Dunlap RA, McGraw JD, Farrell SP (2006) A Mössbauer effect study of structural ordering in rapidly quenched Fe–Ga alloys. J Magn Magn Mater 305(2):315–320. https://doi.org/10.1016/j.jmmm.2006.01.020

    Article  Google Scholar 

  56. Dunlap RA, Deschamps NC, Mar RE, Farrell SP (2006) Mössbauer effect studies of Fe100−xGax films prepared by combinatorial methods. J Phys Condens Matter 18(20):4907–4920. https://doi.org/10.1088/0953-8984/18/20/015

    Article  Google Scholar 

  57. Kawamiya N, Adachi K, Nakamura Y (1972) Magnetic properties and Mössabauer investigations of Fe–Ga Alloys. J Phys Soc Jpn 33(5):1318–1327. https://doi.org/10.1143/JPSJ.33.1318

    Article  Google Scholar 

  58. Newkirk LR, Tsuei CC (1971) Mössbauer study of hyperfine magnetic interactions in Fe–Ga solid solutions. Phys Rev B 4(11):4046. https://doi.org/10.1103/PhysRevB.4.4046

    Article  Google Scholar 

  59. Kawamiya N, Adachi K (1982) Magnetic structure of Fe3Ga studied by neutron diffraction. Trans Jpn Inst Met 23(6):296–302. https://doi.org/10.2320/matertrans1960.23.296

    Article  Google Scholar 

  60. Preston RS, Hanna SS, Heberle J (1962) Mössbauer effect in metallic iron. Phys Rev 128(5):2207. https://doi.org/10.1103/PhysRev.128.2207

    Article  Google Scholar 

  61. Del Bianco L, Hernando A, Bonetti E, Navarro E (1997) Grain-boundary structure and magnetic behavior in nanocrystalline ball-milled iron. Phys Rev B 56(14):8894–8901. https://doi.org/10.1103/PhysRevB.56.8894

    Article  Google Scholar 

  62. Vincze I, Campbell A (1973) Mössbauer measurements in iron based alloys with transition metals. J Phys F Metal Phys 3:647–663. https://doi.org/10.1088/0305-4608/3/3/023

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support from RFBR Grant 13-02-0838 and Moscow University Program of Development up to 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Kiseleva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 307 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiseleva, T., Levin, E., Novakova, A. et al. The formation of Fe–Ga–In nanocomposite particles using mechanochemical interaction of Fe with the Ga–In eutectic. J Mater Sci 53, 13477–13490 (2018). https://doi.org/10.1007/s10853-018-2227-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2227-2

Keywords

Navigation