Advertisement

Journal of Materials Science

, Volume 53, Issue 12, pp 9206–9216 | Cite as

One-pot hydrothermal fabrication and enhanced lithium storage capability of SnO2 nanorods intertangled with carbon nanotubes and graphene nanosheets

  • Qinxing Xie
  • Yating Zhu
  • Peng Zhao
  • Yufeng Zhang
  • Shihua Wu
Energy materials
  • 186 Downloads

Abstract

A three-dimensional (3D) nanoarchitectured ternary composite of SnO2 nanorods intertangled with multiwalled carbon nanotubes and graphene nanosheets (SnO2/CNTs/Gr) was synthesized via one-pot template-free hydrothermal method and investigated as anode for lithium-ion batteries. Compared to bare SnO2 and corresponding binary composites including SnO2/CNTs and SnO2/Gr, SnO2/CNTs/Gr shows significantly improved cycling stability and rate performance. The initial discharge specific capacity of SnO2/CNTs/Gr is 1391 mAh g−1 and remains 522 mAh g−1 after 50 cycles at a current density of 100 mA g−1. Meanwhile, the composite shows excellent rate reversibility. For example, 120 mAh g−1 can be retained at a high current density of up to 1600 mA g−1, and 582 mAh g−1 can still be retrieved once the current density is switched back to 50 mA g−1. The carbon nanotubes and graphene nanosheets in the composites play different enhancing effect. The significantly improved energy storage capability of SnO2/CNTs/Gr can be attributed to a synergistic effect of the intertangled CNTs and graphene nanosheets.

Notes

Acknowledgements

This work was financially supported by the Tianjin Key Projects of New Materials Science and Technology (17ZXCLGX00050) and the National Natural Science Foundation of China (21271107), respectively.

References

  1. 1.
    Zhang J, Zhu Y, Cao C, Butt FK (2015) Microwave-assisted and large-scale synthesis of SnO2/carbon-nanotube hybrids with high lithium storage capacity. RSC Adv 5:58568–58573CrossRefGoogle Scholar
  2. 2.
    Yang S, Yue W, Zhu J, Ren Y, Yang X (2013) Graphene-based mesoporous SnO2 with enhanced electrochemical performance for lithium-ion batteries. Adv Funct Mater 23:3570–3576CrossRefGoogle Scholar
  3. 3.
    Zhou Z, Xie W, Li S, Jiang X, He D, Peng S, Ma F (2015) Facile synthesis of porous Fe3O4@C nanospheres as high-performance anode for lithium-ion battery. J Solid State Electrochem 19:1211–1215CrossRefGoogle Scholar
  4. 4.
    Wang F, Song X, Yao G, Zhao M, Liu R, Xu M, Sun Z (2012) Carbon-coated mesoporous SnO2 nanospheres as anode material for lithium ion batteries. Scr Mater 66:562–565CrossRefGoogle Scholar
  5. 5.
    Dou Y, Xu J, Ruan B, Liu Q, Pan Y, Sun Z, Dou SX (2016) Atomic layer-by-layer Co3O4/graphene composite for high performance lithium-ion batteries. Adv Energy Mater 6:1501835-1–1501835-8CrossRefGoogle Scholar
  6. 6.
    Huang J, Zhu J, Cheng K, Xu Y, Cao D, Wang G (2012) Preparation of Co3O4 nanowires grown on nickel foam with superior electrochemical capacitance. Electrochim Acta 75:273–278CrossRefGoogle Scholar
  7. 7.
    Jiang Y, Zhang D, Li Y, Yuan T, Bahlawane N, Liang C, Sun W, Lu Y, Yan M (2014) Amorphous Fe2O3 as a high-capacity, high-rate and long-life anode material for lithium ion batteries. Nano Energy 4:23–30CrossRefGoogle Scholar
  8. 8.
    Chen M, Liu J, Chao D, Wang J, Yin J, Lin J, Fan H, Shen X (2014) Porous α-Fe2O3 nanorods supported on carbon nanotubes–graphene foam as superior anode for lithium ion batteries. Nano Energy 9:364–372CrossRefGoogle Scholar
  9. 9.
    Yu A, Park HW, Davies A, Higgins DC, Chen Z, Xiao X (2011) Free-standing layer-by-layer hybrid thin film of graphene–MnO2 nanotube as anode for lithium ion batteries. J Phys Chem Lett 2:1855–1860CrossRefGoogle Scholar
  10. 10.
    Shang Y, Yu Z, Xie C, Xie Q, Wu S, Zhang Y, Guan Y (2015) A facile fabrication of MnO2/graphene hybrid microspheres with a porous secondary structure for high performance supercapacitors. J Solid State Electrochem 19:949–956CrossRefGoogle Scholar
  11. 11.
    Zou Y, Zhou X, Xie J, Liao Q, Huang B, Yang J (2014) A corn-like graphene–SnO2–carbon nanofiber composite as a high-performance Li-storage material. J Mater Chem A 2:4524–4527CrossRefGoogle Scholar
  12. 12.
    Yao J, Park JS, Konstantinov K, Wang GX, Ahn JH, Wang J, Liu HK (2009) Electrochemical performance of nanocrystalline SnO2/carbon nanotube composites as anode in lithium-ion cells. J Nanosci Nanotechnol 9:1474–1478CrossRefGoogle Scholar
  13. 13.
    Liang J, Yu XY, Zhou H, Wu HB, Ding S, Lou XW (2014) Bowl-like SnO2@carbon hollow particles as an advanced anode material for lithium-ion batteries. Angew Chem Int Ed Engl 53:12803–12807CrossRefGoogle Scholar
  14. 14.
    Zhou D, Song W-L, Li X, Fan L-Z (2016) Hierarchical porous reduced graphene oxide/SnO2 networks as highly stable anodes for lithium-ion batteries. Electrochim Acta 207:9–15CrossRefGoogle Scholar
  15. 15.
    Tian Q, Tian Y, Zhang Z, Yang L, S-i Hirano (2015) Facile one-pot hydrothermal with subsequent carbonization preparation of hollow tin dioxide@carbon nanostructures as high-performance anode for lithium-ion batteries. J Power Sources 280:397–405CrossRefGoogle Scholar
  16. 16.
    Xu G, Zheng C, Zhang Q, Huang J, Zhao M, Nie J, Wang X, Wei F (2011) Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors. Nano Res 4:870–881CrossRefGoogle Scholar
  17. 17.
    Ji X, Huang X, Liu J, Jiang J, Li X, Ding R, Hu Y, Wu F, Li Q (2010) Carbon-coated SnO2 nanorod array for lithium-ion battery anode material. Nanoscale Res Lett 5:649–653CrossRefGoogle Scholar
  18. 18.
    Liu J, Li Y, Huang X, Ding R, Hu Y, Jiang J, Liao L (2009) Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries. J Mater Chem 19:1859–1864CrossRefGoogle Scholar
  19. 19.
    Zhao NH, Yang LC, Zhang P, Wang GJ, Wang B, Yao BD, Wu YP (2010) Polycrystalline SnO2 nanowires coated with amorphous carbon nanotube as anode material for lithium ion batteries. Mater Lett 64:972–975CrossRefGoogle Scholar
  20. 20.
    Li Q, Li W, Feng Q, Wang P, Mao M, Liu J, Zhou L, Wang H, Yao H (2014) Thickness-dependent fracture of amorphous carbon coating on SnO2 nanowire electrodes. Carbon 80:793–798CrossRefGoogle Scholar
  21. 21.
    Yu L, Guan B, Xiao W, Lou XW (2015) Formation of yolk-shelled Ni–Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion Batteries. Adv Energy Mater 5:1500981-1–1500981-7Google Scholar
  22. 22.
    Jin R, Ma Y, Sun Y, Li H, Wang Q, Chen G (2017) Manganese cobalt oxide (MnCo2O4) hollow spheres as high capacity anode materials for lithium-ion batteries. Energy Technol 5:293–299CrossRefGoogle Scholar
  23. 23.
    Jin R, Jiang H, Sun Y, Ma Y, Li H, Chen G (2016) Fabrication of NiFe2O4/C hollow spheres constructed by mesoporous nanospheres for high-performance lithium-ion batteries. Chem Eng J 303:501–510CrossRefGoogle Scholar
  24. 24.
    Noerochim L, Wang J-Z, Chou S-L, Li H-J, Liu H-K (2010) SnO2-coated multiwall carbon nanotube composite anode materials for rechargeable lithium-ion batteries. Electrochim Acta 56:314–320CrossRefGoogle Scholar
  25. 25.
    Chou S-L, Wang J-Z, Zhong C, Rahman MM, Liu H-K, Dou S-X (2009) A facile route to carbon-coated SnO2 nanoparticles combined with a new binder for enhanced cyclability of Li-ion rechargeable batteries. Electrochim Acta 54:7519–7524CrossRefGoogle Scholar
  26. 26.
    Huang B, Yang J, Zou Y, Ma L, Zhou X (2014) Sonochemical synthesis of SnO2/carbon nanotubes encapsulated in graphene sheets composites for lithium ion batteries with superior electrochemical performance. Electrochim Acta 143:63–69CrossRefGoogle Scholar
  27. 27.
    Guo J, Jiang B, Zhang X, Liu H (2014) Monodisperse SnO2 anchored reduced graphene oxide nanocomposites as negative electrode with high rate capability and long cyclability for lithium-ion batteries. J Power Sources 262:15–22CrossRefGoogle Scholar
  28. 28.
    Jung HY, Hong S, Yu A, Jung SM, Jeoung SK, Jung YJ (2015) Efficient lithium storage from modified vertically aligned carbon nanotubes with open-ends. RSC Adv 5:68875–68880CrossRefGoogle Scholar
  29. 29.
    Zhu J, Yang D, Yin Z, Yan Q, Zhang H (2014) Graphene and graphene-based materials for energy storage applications. Small 10:3480–3498CrossRefGoogle Scholar
  30. 30.
    Abbas SM, Hussain ST, Ali S, Ahmad N, Ali N, Munawar KS (2013) Synthesis of carbon nanotubes anchored with mesoporous Co3O4 nanoparticles as anode material for lithium-ion batteries. Electrochim Acta 105:481–488CrossRefGoogle Scholar
  31. 31.
    Jin R, Wang Q, Cui Y, Zhang S (2017) MFe2O4 (M = Ni, Co) nanoparticles anchored on amorphous carbon coated multiwalled carbon nanotubes as anode materials for lithium-ion batteries. Carbon 123:448–459CrossRefGoogle Scholar
  32. 32.
    Xu CSJ, Gao L (2009) Synthesis of multiwalled carbon nanotubes that are both filled and coated by SnO2 nanoparticles and their high performance in lithium-ion batteries. J Phys Chem C 113:20509–20513CrossRefGoogle Scholar
  33. 33.
    Liu X, Wu M, Li M, Pan X, Chen J, Bao X (2013) Facile encapsulation of nanosized SnO2 particles in carbon nanotubes as an efficient anode of Li-ion batteries. J Mater Chem A 1:9527–9535CrossRefGoogle Scholar
  34. 34.
    Wang D, Yang J, Li X, Geng D, Li R, Cai M, Sham T-K, Sun X (2013) Layer by layer assembly of sandwiched graphene/SnO2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties. Energy Environ Sci 6:2900–2906CrossRefGoogle Scholar
  35. 35.
    Kravchyk K, Protesescu L, Bodnarchuk MI, Krumeich F, Yarema M, Walter M, Guntlin C, Kovalenko MV (2013) Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes. J Am Chem Soc 135:4199–4202CrossRefGoogle Scholar
  36. 36.
    Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRefGoogle Scholar
  37. 37.
    Geng Y, Wang SJ, Kim JK (2009) Preparation of graphite nanoplatelets and graphene sheets. J Colloid Interface Sci 336:592–598CrossRefGoogle Scholar
  38. 38.
    Meng YH, Tang CY, Tsui CP, Uskokovic PS (2010) Fabrication and characterization of HA–ZrO2–MWCNT ceramic composites. J Compos Mater 44:871–882CrossRefGoogle Scholar
  39. 39.
    Shimodaira N, Masui A (2002) Raman spectroscopic investigations of activated carbon materials. J Appl Phys 92:902–909CrossRefGoogle Scholar
  40. 40.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRefGoogle Scholar
  41. 41.
    Liu H, Chen J, Hu R, Yang X, Ruan H, Su Y, Xiao W (2015) Facile one-pot synthesis of self-assembled 3-D flower-like SnO2 architectures and their electrochemical properties. J Mater Sci Mater Electron 27:3968–3973CrossRefGoogle Scholar
  42. 42.
    Wang R, Xu C, Sun J, Gao L, Yao H (2014) Solvothermal-induced 3D macroscopic SnO2/nitrogen-doped graphene aerogels for high capacity and long-life lithium storage. ACS Appl Mater Interfaces 6:3427–3436CrossRefGoogle Scholar
  43. 43.
    Wu P, Du N, Zhang H, Yu J, Qi Y, Yang D (2011) Carbon-coated SnO2 nanotubes: template-engaged synthesis and their application in lithium-ion batteries. Nanoscale 3:746–750CrossRefGoogle Scholar
  44. 44.
    Liu H, Huang J, Li X, Liu J, Zhang Y, Du K (2012) Flower-like SnO2/graphene composite for high-capacity lithium storage. Appl Surf Sci 258:4917–4921CrossRefGoogle Scholar
  45. 45.
    Jiang Y, Yuan T, Sun W, Yan M (2012) Electrostatic spray deposition of porous SnO2/graphene anode films and their enhanced lithium-storage properties. ACS Appl Mater Interfaces 4:6216–6220CrossRefGoogle Scholar
  46. 46.
    Li W, Yoon D, Hwang J, Chang W, Kim J (2015) One-pot route to synthesize SnO2-reduced graphene oxide composites and their enhanced electrochemical performance as anodes in lithium-ion batteries. J Power Sources 293:1024–1031CrossRefGoogle Scholar
  47. 47.
    Mukai SR, Hasegawa T, Takagi M, Tamon H (2004) Reduction of irreversible capacities of amorphous carbon materials for lithium ion battery anodes by Li2CO3 addition. Carbon 42:837–842CrossRefGoogle Scholar
  48. 48.
    Yan C, Yang J, Xie Q, Lu Z, Liu B, Xie C, Wu S, Zhang Y, Guan Y (2015) Novel nanoarchitectured Zn2SnO4 anchored on porous carbon as high performance anodes for lithium ion batteries. Mater Lett 138:120–123CrossRefGoogle Scholar
  49. 49.
    Xie Q, Bao R, Zheng A, Zhang Y, Wu S, Xie C, Zhao P (2016) Sustainable low-cost green electrodes with high volumetric capacitance for aqueous symmetric supercapacitors with high energy density. ACS Sustain Chem Eng 4:1422–1430CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Materials Science and EngineeringTianjin Polytechnic UniversityTianjinChina
  2. 2.Department of ChemistryNankai UniversityTianjinChina

Personalised recommendations