Journal of Materials Science

, Volume 53, Issue 12, pp 9149–9159 | Cite as

Effects of TiO2 nanoparticle size and concentration on dielectric properties of polypropylene nanocomposites

  • Michael D. Womble
  • Juan Herbsommer
  • Yun-Ju Lee
  • Julia W. P. Hsu
Electronic materials


Polymer nanocomposites are promising materials for dielectric waveguides in high-data-rate communications, where extremely low loss is required. In this paper, we study the effect of titania (TiO2) nanoparticle size (30–300 nm) and concentration on the effective permittivity (εeff) and dielectric loss (tan δ) of polypropylene (PP) nanocomposites in two different frequency ranges: 100 Hz–300 kHz and 140 GHz–220 GHz. To aid the dispersion of TiO2 in the PP matrix, polypropylene-graft-maleic anhydride (PP-g-MA) is added. Using this approach, an εeff of 6.84 with tan δ of 0.0049 at 220 GHz is achieved in a 21.5 vol% 100 nm TiO2/PP nanocomposite. We find that εeff is insensitive to nanoparticle size in both frequency ranges while tan δ appears to depend on the filler size at the low frequency range. By using complex permittivity in Lichtenecker’s model, we are able to separate the loss contribution of the polymer matrix from that of the TiO2 nanoparticles. Our results provide insight into the choice of nanoparticle size and the effects of compatibilizer on millimeter-wave dielectric properties.



We thank Prof. W. Voit for the use of the speed mixer and the hot press, Dr. B. Cook for useful discussion, and the University of Dallas and Texas Instruments for the financial support of this project.


  1. 1.
    Lubecke VM, Mizuno K, Rebeiz GM (1998) Micromachining for terahertz applications. IEEE Trans Microw Theory Tech 46:1821–1831CrossRefGoogle Scholar
  2. 2.
    Fukuda S, Hino Y, Ohashi S et al (2011) A 12.5 + 12.5 Gb/s full-duplex plastic waveguide interconnect. In: IEEE international solid-state circuits conference, pp 150–152Google Scholar
  3. 3.
    Hofmann A, Horster E, Weinzierl J et al (2003) Flexible low-loss dielectric waveguides for THz frequencies with transitions to metal waveguides. In: 33rd European microwave conference proceedings (IEEE Cat No03EX723C), pp 955–958Google Scholar
  4. 4.
    Mendis R, Grischkowsky D (2000) Plastic ribbon THz waveguides. J Appl Phys 88:4449–4451CrossRefGoogle Scholar
  5. 5.
    Nelson JK (2007) Overview of nanodielectrics: insulating materials of the future. Electr Insul Conf Electr Manuf Expo 2007:229–235Google Scholar
  6. 6.
    Armstrong G (2015) An introduction to polymer nanocomposites. Eur J Phys 36:063001-1–063001-34CrossRefGoogle Scholar
  7. 7.
    Kim P, Doss NM, Tillotson JP et al (2009) High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer. ACS Nano 3:2581–2592CrossRefGoogle Scholar
  8. 8.
    Kim P, Jones SC, Hotchkiss PJ et al (2007) Phosphonic acid-modified barium titanate polymer nanocomposites with high permittivity and dielectric strength. Adv Mater 19:1001–1005CrossRefGoogle Scholar
  9. 9.
    Chanmal CV, Jog JP (2008) Dielectric relaxations in PVDF/BaTiO3 nanocomposites. Express Polym Lett 2:294–301CrossRefGoogle Scholar
  10. 10.
    Zhang G, Brannum D, Dong D et al (2016) Interfacial polarization-induced loss mechanisms in polypropylene/BaTiO3 nanocomposite dielectrics. Chem Mater 28:4646A–4646OCrossRefGoogle Scholar
  11. 11.
    Yang X, Chahal PP (2015) On-wafer terahertz ribbon waveguides using polymer-ceramic nanocomposites. IEEE Trans Compon Packag Manuf Technol 5:245–255CrossRefGoogle Scholar
  12. 12.
    Yang W, Yi R, Yang X et al (2012) Effect of particle size and dispersion on dielectric properties in ZnO/epoxy resin composites. Trans Electr Electron Mater 13:116–120CrossRefGoogle Scholar
  13. 13.
    Li H, Jiang M, Dong L et al (2013) Particle size dependence of the dielectric properties of polyvinyledene fluoride/silver composites. J Macromol Sci Part B 52:1058–1066Google Scholar
  14. 14.
    Zhiping Z, Jianmin X, Xubing S, Deyue Y (1992) Calculation of the mean-square radius of gyration for polymer chains with side-groups. Eur Polym J 28:1339–1343CrossRefGoogle Scholar
  15. 15.
    Vicente AN, Dip GM, Junqueira C (2011) The step by step development of NRW method. In: 2011 SBMO/IEEE MTT-S international microwave and optoelectronics conference (IMOC 2011)Google Scholar
  16. 16.
    Luukkonen O, Maslovski SI, Tretyakov SA (2011) A stepwise Nicolson–Ross–Weir-based material parameter extraction method. IEEE Antennas Wirel Propag Lett 10:1295–1298CrossRefGoogle Scholar
  17. 17.
    Womble MD, Herbsommer J, Lee Y-J, Hsu J (2017) Understanding the source of dielectric loss in titania/polypropylene nanocomposites up to 220 GHz. In: Optical interconnects XVIIGoogle Scholar
  18. 18.
    Hong CH, Lee YB, Bae JW et al (2005) Preparation and mechanical properties of polypropylene/clay nanocomposites for automotive parts application. J Appl Polym Sci 98:427–433CrossRefGoogle Scholar
  19. 19.
    Bikiaris DN, Vassiliou A, Pavlidou E, Karayannidis GP (2005) Compatibilisation effect of PP-g-MA copolymer on iPP/SiO2 nanocomposites prepared by melt mixing. Eur Polym J 41:1965–1978CrossRefGoogle Scholar
  20. 20.
    Miao Z, Liu Y (2010) Influence of maleic anhydride grafted polypropylene on the dispersion of clay in polypropylene/clay nanocomposites. Polym J 42:745–751CrossRefGoogle Scholar
  21. 21.
    Prashantha K, Soulestin J, Lacrampe MF et al (2008) Multi-walled carbon nanotube filled polypropylene nanocomposites based on masterbatch route: improvement of dispersion and mechanical properties through PP-g-MA addition. Express Polym Lett 2:735–745CrossRefGoogle Scholar
  22. 22.
    Xie L, Huang X, Huang Y et al (2013) Core-shell structured hyperbranched aromatic polyamide/BaTiO3 hybrid filler for poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) nanocomposites with the dielectric constant comparable to that of percolative composites. ACS Appl Mater Interfaces 5:1747–1756CrossRefGoogle Scholar
  23. 23.
    Zhu L (2014) Exploring strategies for high dielectric constant and low loss polymer dielectrics. J Phys Chem Lett 5:3677–3687CrossRefGoogle Scholar
  24. 24.
    Nayak S, Chaki TK, Khastgir D et al (2013) Development of poly(dimethylsiloxane)/BaTiO3 nanocomposites as dielectric material. Adv Mater Res 622–623:897–900Google Scholar
  25. 25.
    Kanehara K, Hoshina T, Takeda H, Tsurumi T (2015) Terahertz permittivity of rutile TiO2 single crystal measured by anisotropic far-infrared ellipsometry. J Ceram Soc Jpn 123:303–306CrossRefGoogle Scholar
  26. 26.
    Karkkainen KK, Sihvola AH, Nikoskinen KI (2000) Effective permittivity of mixtures: numerical validation by the FDTD method. IEEE Trans Geosci Remote Sens 38:1303–1308CrossRefGoogle Scholar
  27. 27.
    Hossain ME, Liu SY, O’Brien S, Li J (2014) Modeling of high-k dielectric nanocomposites. Acta Mech 225:1197–1209CrossRefGoogle Scholar
  28. 28.
    Barber P, Balasubramanian S, Anguchamy Y et al (2009) Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2:1697–1733CrossRefGoogle Scholar
  29. 29.
    Fan B-H, Zha J-W, Wang D et al (2012) Size-dependent low-frequency dielectric properties in the BaTiO3/poly(vinylidene fluoride) nanocomposite films. Appl Phys Lett 100:012903-1–012903-4Google Scholar
  30. 30.
    Schöche S, Hofmann T, Korlacki R et al (2013) Infrared dielectric anisotropy and phonon modes of rutile TiO2. J Appl Phys 113:164102–1–164102–13Google Scholar
  31. 31.
    Cho S-D, Lee S-Y, Hyun J-G, Paik K-W (2005) Comparison of theoretical predictions and experimental values of the dielectric constant of epoxy/BaTiO3 composite embedded capacitor films. J Mater Sci Mater Electron 16:77–84. CrossRefGoogle Scholar
  32. 32.
    Wang Y, Wang J-C, Chen S-Z (2014) Role of surfactant molecular weight on morphology and properties of functionalized graphite oxide filled polypropylene nanocomposites. Express Polym Lett 8:881–894CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of Texas at DallasRichardsonUSA
  2. 2.Kilby LabsTexas InstrumentsDallasUSA

Personalised recommendations