Graphdiyne-hybridized N-doped TiO2 nanosheets for enhanced visible light photocatalytic activity

  • Yuze Dong
  • Yanming Zhao
  • Yanhuan Chen
  • Yaqing Feng
  • Mengyao Zhu
  • Chenggong Ju
  • Bao Zhang
  • Huibiao Liu
  • Jialiang Xu
Chemical routes to materials


In this study, graphdiyne (GD)-hybridized nitrogen-doped TiO2 nanosheets with exposed (001) facets (GD-NTNS) have been prepared via a hydrothermal reaction and utilized as photocatalyst for the photodegradation of rhodamine B (RhB) under visible light illumination. The resultant GD-NTNS composites exhibit superior visible light photocatalytic activity than that of the bare TiO2 nanosheets (TNS) and nitrogen-doped TiO2 nanosheets (NTNS). The enhanced photoactivity can be attributed to the synergistic effects of GD and nitrogen doping with efficient electron transfer and strong visible light absorption. It has been revealed that ·O2− and h+ are the major species for the enhanced photoactivity under visible light. Our work will facilitate the potential for future design of hybrid materials for practical applications beyond photocatalysts.



This work is supported by National Natural Science Foundation of China (No. 21773168, 21476162, 51503143, 21761132007, 21790051 and 21790050), the National Key R&D Program of China (No. 2016YFE0114900), National Key Research and Development Project of China (2016YFA0200104), Key Program of the Chinese Academy of Sciences (QYZDY-SSW-SLH015), Tianjin Natural Science Foundation (16JCQNJC05000), Innovation Foundation of Tianjin University (Project No. 2016XRX-0017), Tianjin Science and Technology Innovation Platform Program (No. 14TXGCCX00017) and The Tianjin 1000 Youth Talents Plan.

Supplementary material

10853_2018_2210_MOESM1_ESM.doc (2.8 mb)
The online version of this article contains supplementary material, which is available to authorized users (DOC 2839 kb)


  1. 1.
    Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349CrossRefGoogle Scholar
  2. 2.
    Su S, Guo W, Leng Y, Yi C, Ma Z (2013) Heterogeneous activation of oxone by CoxFe3–xO4 nanocatalysts for degradation of rhodamine B. J Hazard Mater 244:736–742CrossRefGoogle Scholar
  3. 3.
    Huang H, Li X, Wang J, Dong F, Chu PK, Zhang T, Zhang Y (2015) Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO32-doped Bi2O2CO3. ACS Catal 5:4094–4103CrossRefGoogle Scholar
  4. 4.
    Di Paola A, García-López E, Marcì G, Palmisano L (2012) A survey of photocatalytic materials for environmental remediation. J Hazard Mater 211:3–29CrossRefGoogle Scholar
  5. 5.
    Marin RP, Ishikawa S, Bahruji H, Shaw G, Kondrat SA, Miedziak PJ, Morgan DJ, Taylor SH, Bartley JK, Edwards JK, Bowker M, Ueda W, Hutchings GJ (2015) Supercritical antisolvent precipitation of TiO2 with tailored anatase/rutile composition for applications in redox catalysis and photocatalysis. Appl Catal A 504:62–73CrossRefGoogle Scholar
  6. 6.
    Chen MS, Goodman DW (2004) The structure of catalytically active gold on Titania. Science 306:252CrossRefGoogle Scholar
  7. 7.
    Zhang L-W, Fu H-B, Zhu Y-F (2008) Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon. Adv Funct Mater 18:2180–2189CrossRefGoogle Scholar
  8. 8.
    Zhou W, Yin Z, Du Y, Huang X, Zeng Z, Fan Z, Liu H, Wang J, Zhang H (2013) Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9:140–147CrossRefGoogle Scholar
  9. 9.
    Men X, Wu Y, Chen H, Fang X, Sun H, Yin S, Qin W (2017) Facile fabrication of TiO2/Graphene composite foams with enhanced photocatalytic properties. J Alloys Compd 703:251–257CrossRefGoogle Scholar
  10. 10.
    Michael SCB, Haley M, Pak Joshua J (1997) Carbon networks based on dehydrobenzoannulenes: synthesis of graphdiyne substructures. Angew Chem Int Ed Engl 36:836–838CrossRefGoogle Scholar
  11. 11.
    Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D (2010) Architecture of graphdiyne nanoscale films. Chem Commun 46:3256–3258CrossRefGoogle Scholar
  12. 12.
    Li C, Lu X, Han Y, Tang S, Ding Y, Liu R, Bao H, Li Y, Luo J, Lu T (2017) Direct imaging and determination of the crystal structure of six-layered graphdiyne. Nano Res. Google Scholar
  13. 13.
    Li J, Xie Z, Xiong Y, Li Z, Huang Q, Zhang S, Zhou J, Liu R, Gao X, Chen C, Tong L, Zhang J, Liu Z (2017) Architecture of beta-graphdiyne-containing thin film using modified glaser-hay coupling reaction for enhanced photocatalytic property of TiO2. Adv Mater 29:1700421CrossRefGoogle Scholar
  14. 14.
    Wang K, Wang N, He J, Yang Z, Shen X, Huang C (2017) Preparation of 3D architecture graphdiyne nanosheets for high performance sodium–ion batteries and capacitors. ACS Appl Mater Interfaces. Google Scholar
  15. 15.
    Jin Z, Yuan M, Li H, Yang H, Zhou Q, Liu H, Lan X, Liu M, Wang J, Sargent EH, Li Y (2016) Graphdiyne: an efficient hole transporter for stable high-performance colloidal quantum dot solar cells. Adv Funct Mater 26:5284–5289CrossRefGoogle Scholar
  16. 16.
    Qi H, Yu P, Wang Y, Han G, Liu H, Yi Y, Li Y, Mao L (2015) Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity. J Am Chem Soc 137:5260–5263CrossRefGoogle Scholar
  17. 17.
    Ren H, Shao H, Zhang L, Guo D, Jin Q, Yu R, Wang L, Li Y, Wang Y, Zhao H, Wang D (2015) A new graphdiyne nanosheet/pt nanoparticle-based counter electrode material with enhanced catalytic activity for dye-sensitized solar cells. Adv Energy Mater 5:1500296CrossRefGoogle Scholar
  18. 18.
    Jia Z, Li Y, Zuo Z, Liu H, Huang C, Li Y (2017) Synthesis and properties of 2D carbon—graphdiyne. Acc Chem Res 50:2470–2478CrossRefGoogle Scholar
  19. 19.
    Chandra Shekar S, Swathi RS (2018) Molecular switching on graphyne and graphdiyne: realizing functional carbon networks in synergy with graphene. Carbon 126:489–499CrossRefGoogle Scholar
  20. 20.
    Thangavel S, Krishnamoorthy K, Krishnaswamy V, Raju N, Kim SJ, Venugopal G (2015) Graphdiyne–ZnO nanohybrids as an advanced photocatalytic material. J Phys Chem C 119:22057CrossRefGoogle Scholar
  21. 21.
    Zhang X, Zhu M, Chen P, Li Y, Liu H, Li Y, Liu M (2015) Pristine graphdiyne-hybridized photocatalysts using graphene oxide as a dual-functional coupling reagent. Phys Chem Chem Phys 17:1217CrossRefGoogle Scholar
  22. 22.
    Wang S, Yi L, Halpert JE, Lai X, Liu Y, Cao H, Yu R, Wang D, Li Y (2012) A novel and highly efficient photocatalyst based on P25-graphdiyne nanocomposite. Small 8:265–271CrossRefGoogle Scholar
  23. 23.
    Erdem B, Hunsicker RA, Simmons GW, Sudol ED, Dimonie VL, El-Aasser MS (2001) XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir 17:2664–2669CrossRefGoogle Scholar
  24. 24.
    Yang N, Liu Y, Wen H, Tang Z, Zhao H, Li Y, Wang D (2013) Photocatalytic properties of graphdiyne and graphene modified TiO2: from theory to experiment. ACS Nano 7:1504–1512CrossRefGoogle Scholar
  25. 25.
    Wang J, Tafen DN, Lewis JP, Hong Z, Manivannan A, Zhi M, Li M, Wu N (2009) Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J Am Chem Soc 131:12290–12297CrossRefGoogle Scholar
  26. 26.
    Serpone N (2006) Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J Phy Chem B 110:24287–24293CrossRefGoogle Scholar
  27. 27.
    Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC, Cheng HM, Lu GQ (2008) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453:638–641CrossRefGoogle Scholar
  28. 28.
    Roy N, Sohn Y, Pradhan D (2013) Synergy of low-energy 101 and high-energy 001 TiO2 Crystal facets for enhanced photocatalysis. ACS Nano 7:2532–2540CrossRefGoogle Scholar
  29. 29.
    Xiang Q, Yu J, Wang W, Jaroniec M (2011) Nitrogen self-doped nanosized TiO2 sheets with exposed 001 facets for enhanced visible-light photocatalytic activity. Chem Commun 47:6906–6908CrossRefGoogle Scholar
  30. 30.
    Chen K, Jiang Z, Qin J, Jiang Y, Li R, Tang H, Yang X (2014) Synthesis and improved photocatalytic activity of ultrathin TiO2 nanosheets with nearly 100% exposed (001) facets. Ceram Int 40:16817–16823CrossRefGoogle Scholar
  31. 31.
    Zhang Y, Zhang N, Tang Z-R, Xu Y-J (2012) Improving the photocatalytic performance of graphene-TiO2 nanocomposites via a combined strategy of decreasing defects of graphene and increasing interfacial contact. Phys Chem Chem Phys 14:9167–9175CrossRefGoogle Scholar
  32. 32.
    Nguyen-Phan T-D, Pham VH, Chung JS, Chhowalla M, Asefa T, Kim W-J, Shin EW (2014) Photocatalytic performance of Sn-doped TiO2/reduced graphene oxide composite materials. Appl Catal A 473:21–30CrossRefGoogle Scholar
  33. 33.
    Han X, Kuang Q, Jin M, Xie Z, Zheng L (2009) Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J Am Chem Soc 131:3152–3153CrossRefGoogle Scholar
  34. 34.
    Zhang H, Lv X, Li Y, Wang Y, Li J (2010) P25-graphene composite as a high performance photocatalyst. ACS Nano 4:380–386CrossRefGoogle Scholar
  35. 35.
    Nguyen-Phan T-D, Pham VH, Shin EW, Pham H-D, Kim S, Chung JS, Kim EJ, Hur SH (2011) The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chem Eng J 170:226–232CrossRefGoogle Scholar
  36. 36.
    Ismail AA, Geioushy RA, Bouzid H, Al-Sayari SA, Al-Hajry A, Bahnemann DW (2013) TiO2 decoration of graphene layers for highly efficient photocatalyst: impact of calcination at different gas atmosphere on photocatalytic efficiency. Appl Catal B 129:62–70CrossRefGoogle Scholar
  37. 37.
    Sahoo S, Arora AK, Sridharan V (2009) Raman line shapes of optical phonons of different symmetries in anatase TiO2 nanocrystals. J Phy Chem C 113:16927–16933CrossRefGoogle Scholar
  38. 38.
    Ong W-J, Tan L-L, Chai S-P, Yong S-T, Mohamed AR (2014) Self-assembly of nitrogen-doped TiO2 with exposed 001 facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane. Nano Res 7:1528–1547CrossRefGoogle Scholar
  39. 39.
    Estrade-Szwarckopf H (2004) XPS photoemission in carbonaceous materials: a “defect” peak beside the graphitic asymmetric peak. Carbon 42:1713–1721CrossRefGoogle Scholar
  40. 40.
    Liu R, Liu H, Li Y, Yi Y, Shang X, Zhang S, Yu X, Zhang S, Cao H, Zhang G (2014) Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions. Nanoscale 6:11336–11343CrossRefGoogle Scholar
  41. 41.
    Huang Q, Tian S, Zeng D, Wang X, Song W, Li Y, Xiao W, Xie C (2013) Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C-Ti bond. ACS Catal 3:1477–1485CrossRefGoogle Scholar
  42. 42.
    Yu J-G, Yu H-G, Cheng B, Zhao X-J, Yu JC, Ho W-K (2003) The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. J Phy Chem B 107:13871–13879CrossRefGoogle Scholar
  43. 43.
    Liu G, Yang HG, Wang X, Cheng L, Pan J, Lu GQ, Cheng HM (2009) Visible light responsive nitrogen doped anatase TiO2 sheets with dominant 001 facets derived from TiN. J Am Chem Soc 131:12868–12869CrossRefGoogle Scholar
  44. 44.
    Asahi R, Morikawa T, Irie H, Ohwaki T (2014) Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem Rev 114:9824–9852CrossRefGoogle Scholar
  45. 45.
    Han C, Wang Y, Lei Y, Wang B, Wu N, Shi Q, Li Q (2015) In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res 8:1199–1209CrossRefGoogle Scholar
  46. 46.
    Livraghi S, Paganini MC, Giamello E, Selloni A, Di Valentin C, Pacchioni G (2006) Origin of photoactivity of nitrogen-doped titanium dioxide under visible light. J Am Chem Soc 128:15666–15671CrossRefGoogle Scholar
  47. 47.
    Li K, Gao S, Wang Q, Xu H, Wang Z, Huang B, Dai Y, Lu J (2015) In-situ-reduced synthesis of Ti3+ Self-Doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under LED light irradiation. ACS Appl Mater Interfaces 7:9023–9030CrossRefGoogle Scholar
  48. 48.
    Ji H, Lyu L, Zhang L, An X, Hu C (2016) Oxygen vacancy enhanced photostability and activity of plasmon-Ag composites in the visible to near-infrared region for water purification. Appl Catal B 199:230–240CrossRefGoogle Scholar
  49. 49.
    Cao J, Luo B, Lin H, Xu B, Chen S (2012) Visible light photocatalytic activity enhancement and mechanism of AgBr/Ag3PO4 hybrids for degradation of methyl orange. J Hazard Mater 217:107–115CrossRefGoogle Scholar
  50. 50.
    Xiao X, Xing C, He G, Zuo X, Nan J, Wang L (2014) Solvothermal synthesis of novel hierarchical Bi4O5I2 nanoflakes with highly visible light photocatalytic performance for the degradation of 4-tert-butylphenol. Appl Catal B 148:154–163CrossRefGoogle Scholar
  51. 51.
    Liang YT, Vijayan BK, Gray KA, Hersam MC (2011) Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. Nano Lett 11:2865–2870CrossRefGoogle Scholar
  52. 52.
    Pan X, Yang M-Q, Tang Z-R, Xu Y-J (2014) Noncovalently functionalized graphene-directed synthesis of ultralarge graphene-based TiO2 nanosheet composites: tunable morphology and photocatalytic applications. J Phy Chem C 118:27325–27335CrossRefGoogle Scholar
  53. 53.
    Yao W, Li Y, Yan D, Ma M, He Z, Chai S, Su X, Chen F, Fu Q (2013) Fabrication and photocatalysis of TiO2-graphene sandwich nanosheets with smooth surface and controlled thickness. Chem Eng J 229:569–576CrossRefGoogle Scholar
  54. 54.
    Gao X-X, Ge Q-Q, Xue D-J, Ding J, Ma J-Y, Chen Y-X, Zhang B, Feng Y, Wan L-J, Hu J-S (2016) Tuning the Fermi-level of TiO2 mesoporous layer by lanthanum doping towards efficient perovskite solar cells. Nanoscale 8:16881–16885CrossRefGoogle Scholar
  55. 55.
    Lin B, Yang G, Yang B, Zhao Y (2016) Construction of novel three dimensionally ordered macroporous carbon nitride for highly efficient photocatalytic activity. Appl Catal B 198:276–285CrossRefGoogle Scholar
  56. 56.
    Li G, Wong KH, Zhang X, Hu C, Yu JC, Chan RCY, Wong PK (2009) Degradation of acid orange 7 using magnetic AgBr under visible light: the roles of oxidizing species. Chemosphere 76:1185–1191CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China
  2. 2.Collaborative Innovation Center of Chemical Science and Engineering [Tianjin]TianjinPeople’s Republic of China
  3. 3.CAS Key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations