Journal of Materials Science

, Volume 53, Issue 12, pp 9034–9045 | Cite as

Design of spinous Ni/N-GN nanocomposites as novel magnetic/dielectric microwave absorbents with high-efficiency absorption performance and thin thickness

  • Linxue Zhang
  • Yan Zong
  • Zhaoxin Li
  • Kexun Huang
  • Yong Sun
  • Yingying Lan
  • Hongjing Wu
  • Xinghua Li
  • Xinliang Zheng


Elaborately constructing magnetic/dielectric nanocomposites is believed to be an efficient pathway to enhance the microwave absorption performance of microwave absorbers. We reported a straightforward one-pot solvothermal route to fabricate spinous Ni grown on N-GN as fascinating magnetic/dielectric microwave absorbents. Ni nanostructures show spinous shape, which are regularly decorated on N-GN. Benefiting from the synergistic effect of magnetic spinous Ni nanostructures and dielectric lightweight N-GN, the N-GN/Ni nanocomposites possess tremendously increased microwave absorption characteristics. The N-GN/Ni nanocomposites exhibit a maximum RL of − 47.1 dB at 13.6 GHz when the thickness is only 1.6 mm, which is about 3 times larger than that of bare Ni. In particular, the effective absorption bandwidth (RL ≤ − 10 dB) of N-GN/Ni nanocomposites at 1.6 mm can reach 3.9 GHz ranging from 11.6 to 15.5 GHz. When the thickness is 1.1–5.0 mm, N-GN/Ni nanocomposites show a broad effective absorption bandwidth (RL ≤ − 10 dB) of 15.5 GHz ranging from 2.5 to 18 GHz, whereas the effective absorption bandwidth of bare Ni is only 0.7 GHz. The improved microwave absorption performance of N-GN/Ni nanocomposites is related to better impedance matching condition and higher attenuation capacity. The N-GN/Ni nanocomposites, which possess thin thickness, lightweight, strong absorption and broad bandwidth, are believed to have great potential as novel high-efficiency microwave absorbers.



This work was supported by the National Natural Science Foundation of China (11504293, 51572218), China Postdoctoral Science Foundation (2015M580870, 2016T90942), Young Talent Fund of University Association for Science and Technology in Shaanxi, China (20170605), and Natural Science Foundation of Shaanxi Province (2017KCT-01).

Supplementary material

10853_2018_2200_MOESM1_ESM.doc (563 kb)
Supplementary material 1 (DOC 563 kb)


  1. 1.
    Zhang Y, Huang Y, Zhang T, Chang H, Xiao P, Chen H, Huang Z, Chen Y (2015) Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv Mater 27:2049–2053CrossRefGoogle Scholar
  2. 2.
    Wu G, Cheng Y, Yang Z, Jia Z, Wu H, Yang L, Li H, Guo P, Lv H (2018) Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem Eng J 333:519–528CrossRefGoogle Scholar
  3. 3.
    Durmus Z, Durmus A, Kavas H (2015) Synthesis and characterization of structural and magnetic properties of graphene/hard ferrite nanocomposites as microwave-absorbing material. J Mater Sci 50:1201–1213. CrossRefGoogle Scholar
  4. 4.
    Li C, Zhang Y, Ji S, Jiang X, Zhang Z, Yu L (2018) Microwave absorption properties of γ-Fe2O3/(SiO2)x-SO3H/polypyrrole core/shell/shell microspheres. J Mater Sci 53:5270–5286. CrossRefGoogle Scholar
  5. 5.
    Jiao Z, Qiu J (2018) Microwave absorption performance of iron oxide/multiwalled carbon nanotubes nanohybrids prepared by electrostatic attraction. J Mater Sci 53:3640–3646. CrossRefGoogle Scholar
  6. 6.
    Zhao B, Guo X, Zhao W, Deng J, Fan B, Shao G, Bai Z, Zhang R (2017) Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/kirkendall effect and their enhanced microwave absorption properties. Nano Res 10:331–343CrossRefGoogle Scholar
  7. 7.
    Wu H, Wu G, Ren Y, Yang L, Wang L, Li X (2015) Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4-CoNiO2 hybrids. J Mater Chem C 3:7677–7690CrossRefGoogle Scholar
  8. 8.
    Wu G, Cheng Y, Xiang F, Jia Z, Xie Q, Wu G, Wu H (2016) Morphology-controlled synthesis, characterization and microwave absorption properties of nanostructured 3D CeO2. Mater Sci Semicond Process 41:6–11CrossRefGoogle Scholar
  9. 9.
    Chu W, Wang Y, Du Y, Qiang R, Tian C, Han X (2017) FeCo alloy nanoparticles supported on ordered mesoporous carbon for enhanced microwave absorption. J Mater Sci 52:13636–13649. CrossRefGoogle Scholar
  10. 10.
    Wu H, Wu G, Wang L (2015) Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technol 269:443–451CrossRefGoogle Scholar
  11. 11.
    Lan Y, Li X, Zong Y, Li Z, Sun Y, Tan G, Feng J, Ren Z, Zheng X (2016) In-situ synthesis of carbon nanotubes decorated by magnetite nanoclusters and their applications as highly efficient and enhanced microwave absorber. Ceram Int 42:19119–19118CrossRefGoogle Scholar
  12. 12.
    Lv H, Liang X, Cheng Y, Zhang H, Tang D, Zhang B, Ji G, Du Y (2015) Coin-like α-Fe2O3@CoFe2O4 core-shell composites with excellent electromagnetic absorption performance. ACS Appl Mater Interfaces 7:4744–4750CrossRefGoogle Scholar
  13. 13.
    Tian C, Du Y, Cui C, Deng Z, Xue J, Xu P, Qiang R, Wang Y, Han X (2017) Synthesis and microwave absorption enhancement of yolk-shell Fe3O4@C microspheres. J Mater Sci 52:6349–6361. CrossRefGoogle Scholar
  14. 14.
    Cheng Y, Ji G, Li Z, Lv H, Liu W, Zhao Y, Cao J, Du Y (2017) Facile synthesis of FeCo alloys with excellent microwave absorption in the whole Ku-band: effect of Fe/Co atomic ratio. J Alloys Compd 704:289–295CrossRefGoogle Scholar
  15. 15.
    Zhao B, Guo X, Zhao W, Deng J, Shao G, Fan B, Bai Z, Zhang R (2016) Yolk-shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties. ACS Appl Mater Interfaces 8:28917–28925CrossRefGoogle Scholar
  16. 16.
    Zhao B, Zhao W, Shao G, Fan B, Zhang R (2015) Morphology-control synthesis of a core-shell structured NiCu alloy with tunable electromagnetic-wave absorption capabilities. ACS Appl Mater Interfaces 7:12951–12960CrossRefGoogle Scholar
  17. 17.
    Xia T, Zhang C, Oyler N, Chen X (2013) Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv Mater 25:6905–6910CrossRefGoogle Scholar
  18. 18.
    Wang G, Wu Y, Zhang X, Li Y, Guo L, Cao M (2014) Controllable synthesis of uniform ZnO nanorods and their enhanced dielectric and absorption properties. J Mater Chem A 23:8644–8651CrossRefGoogle Scholar
  19. 19.
    Wang G, He S, Luo X, Wen B, Lu M, Guo L (2013) Synthesis and growth mechanism of 3D α-MnO2 clusters and their application in polymer composites with enhanced microwave absorption properties. RSC Adv 3:18009–18015CrossRefGoogle Scholar
  20. 20.
    Hong W, Dong S, Hu P, Luo X, Du S (2017) In situ growth of one-dimensional nanowires on porous PDC-SiC/Si3N4 ceramics with excellent microwave absorption properties. Ceram Int 43:14301–14308CrossRefGoogle Scholar
  21. 21.
    Xia F, Liu J, Gu D, Zhao P, Zhang J, Che R (2011) Microwave absorption enhancement and electron microscopy characterization of BaTiO3 nano-torus. Nanoscale 3:3860–3867CrossRefGoogle Scholar
  22. 22.
    Lv H, Ji G, Liu W, Zhang H, Du Y (2015) Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features. J Mater Chem C 3:10232–10241CrossRefGoogle Scholar
  23. 23.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 30:666–669CrossRefGoogle Scholar
  24. 24.
    Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H (2011) Graphene-based materials: synthesis, characterization, properties and applications. Small 7:1876–1902CrossRefGoogle Scholar
  25. 25.
    Lin Z, Xie J, Zhang B, Li JW, Weng J, Song R, Huang X, Zhang H, Li H, Liu Y, Xu Z, Huang W, Zhang Q (2017) Solution-processed nitrogen-rich graphene-like holey conjugated polymer for efficient lithium ion storage. Nano Energy 41:117–127CrossRefGoogle Scholar
  26. 26.
    Cao X, Yin Z, Zhang H (2014) Three-dimensional graphene materials: preparation, structures and application in supercapacitors. Energ Environ Sci 7:1850–1865CrossRefGoogle Scholar
  27. 27.
    Huang Y, Liang J, Chen Y (2012) An overview of the applications of graphene-based materials in supercapacitors. Small 8:1805–1834CrossRefGoogle Scholar
  28. 28.
    Wan X, Long G, Huang L, Chen Y (2011) Graphene-a promising material for organic photovoltaic cells. Adv Mater 23:5342–5358CrossRefGoogle Scholar
  29. 29.
    Hu Y, Lian H, Zu L, Jiang Y, Hu Z, Li Y, Shen S, Cui X, Liu Y (2016) Durable electromechanical actuator based on graphene oxide with in situ reduced graphene oxide electrodes. J Mater Sci 51:1376–1381. CrossRefGoogle Scholar
  30. 30.
    Wu W, Zhang C, Hou S (2017) Electrochemical exfoliation of graphene and graphene-analogous 2D nanosheets. J Mater Sci 52:10649–10660. CrossRefGoogle Scholar
  31. 31.
    Wang C, Han X, Xu P, Zhang X, Du Y, Hu S (2011) The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl Phys Lett 98:072906CrossRefGoogle Scholar
  32. 32.
    Wen B, Cao M, Lu M, Cao W, Shi H, Liu J, Wang X, Jin H, Fang X, Wang W, Yuan J (2014) Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv Mater 26:3484–3489CrossRefGoogle Scholar
  33. 33.
    Zhang Y, Huang Y, Chen H, Huang Z, Yang Y, Xiao P, Zhou Y, Chen Y (2016) Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 105:438–447CrossRefGoogle Scholar
  34. 34.
    Chen Z, Xu C, Ma C, Ren W, Cheng H (2013) Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater 25:1296–1300CrossRefGoogle Scholar
  35. 35.
    Cao W, Wang X, Yuan J, Wang W, Cao M (2015) Temperature dependent microwave absorption of ultrathin graphene composites. J Mater Chem C 3:10017–10022CrossRefGoogle Scholar
  36. 36.
    Lv H, Yang Z, Cheng Y, Wang L, Zhang B, Zhao Y, Xu Z, Ji G (2017) A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials. J Mater Chem C 5:491–512CrossRefGoogle Scholar
  37. 37.
    Bansala T, Joshi M, Mukhopadhyay S, Doong R, Chaudhary M (2017) Electrically conducting graphene-based polyurethane nanocomposites for microwave shielding applications in the Ku band. J Mater Sci 52:1546–1560. CrossRefGoogle Scholar
  38. 38.
    Yan P, Miao J, Cao J, Zhang H, Wang C, Xie A, Shen Y (2017) Facile synthesis and excellent electromagnetic wave absorption properties of flower-like porous RGO/PANI/Cu2O nanocomposites. J Mater Sci 52:13078–13090. CrossRefGoogle Scholar
  39. 39.
    Zheng X, Feng J, Zong Y, Miao H, Hu X, Bai J, Li X (2015) Hydrophobic graphene nanosheets decorated by monodispersed superparamagnetic Fe3O4 nanocrystals as synergistic electromagnetic wave absorbers. J Mater Chem C 3:4452–4463CrossRefGoogle Scholar
  40. 40.
    Liu P, Yao Z, Zhou J, Yang Z, Kong L (2016) Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J Mater Chem C 4:9738–9749CrossRefGoogle Scholar
  41. 41.
    Wu J, Ye Z, Liu W, Liu Z, Chen J (2017) The effect of GO loading on electromagnetic wave absorption properties of Fe3O4/reduced graphene oxide hybrids. Ceram Int 43:13146–13153CrossRefGoogle Scholar
  42. 42.
    Feng J, Zha W, Kang M, Lu S, Cui L, Li S (2013) Microwave absorption response of nickel/grapheme nanocomposites prepared by electrodeposition. J Mater Sci 48:8060–8067. CrossRefGoogle Scholar
  43. 43.
    Li Z, Li X, Zong Y, Tan G, Sun Y, Lan Y, He M, Ren Z, Zheng X (2017) Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon 115:493–502CrossRefGoogle Scholar
  44. 44.
    Wang X, Ma T, Shu J, Cao M (2018) Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth. Chem Eng J 332:321–330CrossRefGoogle Scholar
  45. 45.
    Li X, Feng J, Du Y, Bai J, Fan H, Zhang H, Peng Y, Li F (2015) One-pot synthesis of CoFe2O4/graphene oxide nanocomposites and their conversion into FeCo/graphene nanocomposites for lightweight and highly efficient microwave absorber. J Mater Chem A 3:5535–5546CrossRefGoogle Scholar
  46. 46.
    Ding Y, Zhang L, Liao Q, Zhang G, Liu S, Zhang Y (2016) Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings. Nano Res 9:2018–2025CrossRefGoogle Scholar
  47. 47.
    Ren Y, Wu H, Lu M, Chen Y, Zhu C, Gao P, Cao M, Li C, Ouyang Q (2012) Quaternary nanocomposites consisting of graphene, Fe3O4@Fe core@shell, and ZnO nanoparticles: synthesis and excellent electromagnetic absorption properties. ACS Appl Mater Interfaces 4:6436–6442CrossRefGoogle Scholar
  48. 48.
    Liu P, Yao Z, Zhou J (2016) Fabrication and microwave absorption of reduced graphene oxide/Ni0.4Zn0.4Co0.2Fe2O4 nanocomposites. Ceram Int 42:9241–9249CrossRefGoogle Scholar
  49. 49.
    Pan G, Zhu J, Ma S, Sun G, Yang X (2013) Enhancing the electromagnetic performance of Co through the phase-controlled synthesis of hexagonal and cubic Co nanocrystals grown on graphene. ACS Appl Mater Interfaces 5:12716–12724CrossRefGoogle Scholar
  50. 50.
    Zhou J, Chen Y, Li H, Dugnani R, Du Q, UrRehman H, Kang H, Liu H (2018) Facile synthesis of three-dimensional lightweight nitrogen-doped graphene aerogel with excellent electromagnetic wave absorption properties. J Mater Sci 53:4067–4077. CrossRefGoogle Scholar
  51. 51.
    Feng J, Pu F, Li Z, Li X, Hu X, Bai J (2016) Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon 104:214–225CrossRefGoogle Scholar
  52. 52.
    Cao Y, Su Q, Che R, Du G, Xu B (2012) One-step chemical vapor synthesis of Ni/graphene nanocomposites with excellent electromagnetic and electrocatalytic properties. Synthetic Met 162:968–973CrossRefGoogle Scholar
  53. 53.
    Chen T, Deng F, Zhu J, Chen C, Sun G, Ma S, Yang X (2012) Hexagonal and cubic Ni nanocrystals grown on graphene: phase controlled synthesis, characterization and their enhanced microwave absorption properties. J Mater Chem 22:15190–15197CrossRefGoogle Scholar
  54. 54.
    Zhu Z, Sun X, Li G, Xue H, Guo H, Fan X, Pan X, He J (2015) Microwave-assisted synthesis of graphene-Ni composites with enhanced microwave absorption properties in Ku-band. J Magn Magn Mater 377:95–103CrossRefGoogle Scholar
  55. 55.
    Xiong L, Yu M, Liu J, Li S, Xue B (2017) Preparation and evaluation of the microwave absorption properties of template-free graphene foam-supported Ni nanoparticles. RSC Adv 7:14733–14741CrossRefGoogle Scholar
  56. 56.
    Pan W, Liu Q, Han R, Chi X, Wang J (2013) Microwave absorption properties of the Ni nanofibers fabricated by electrospinning. Appl Phys A 113:755–761CrossRefGoogle Scholar
  57. 57.
    Liu T, Zhou P, Xie J, Deng L (2012) Electromagnetic and absorption properties of urchinlike Ni composites at microwave frequencies. J Appl Phys 111:093905CrossRefGoogle Scholar
  58. 58.
    Zhao B, Shao G, Fan B, Xie Y, Wang B, Zhang R (2014) Solvothermal synthesis and electromagnetic absorption properties of pyramidal Ni superstructures. J Mater Res 29:1431–1439CrossRefGoogle Scholar
  59. 59.
    Zhang C, Yao Y, Zhan J, Wu J, Li C (2013) Template-free synthesis of Ni microfibres and their electromagnetic wave absorbing properties. J Phys D Appl Phys 46:495308CrossRefGoogle Scholar
  60. 60.
    Zong Y, Xin H, Zhang J, Li X, Feng J, Deng X, Sun Y, Zheng X (2017) One-pot, template- and surfactant-free solvothermal synthesis of high-crystalline Fe3O4 nanostructures with adjustable morphologies and high magnetization. J Magn Magn Mater 423:321–326CrossRefGoogle Scholar
  61. 61.
    Sun Y, Zong Y, Feng J, Li X, Yan F, Lan Y, Zhang L, Ren Z, Zheng X (2018) Oxygen vacancies driven size-dependent d0 room temperature ferromagnetism in well-dispersed dopant-free ZnO nanoparticles and density functional theory calculation. J Alloys Compd 739:1080–1088CrossRefGoogle Scholar
  62. 62.
    Feng A, Wu G, Pan C, Wang Y (2017) The behavior of acid treating carbon fiber and the mechanical properties and thermal conductivity of phenolic resin matrix composites. J Nanosci Nanotechnol 17:3786–3791CrossRefGoogle Scholar
  63. 63.
    Wang G, Peng X, Yu L, Wan G, Lin S, Qin Y (2015) Enhanced microwave absorption of ZnO coated with Ni nanoparticles produced by atomic layer deposition. J Mater Chem A 3:2734–2740CrossRefGoogle Scholar
  64. 64.
    Li Z, Shi G, Zhao Q (2017) Improved microwave absorption properties of core–shell type Ni@SiC nanocomposites. J Mater Sci Mater Electron 28:5887–5897CrossRefGoogle Scholar
  65. 65.
    Li Z, Deng Y, Shen B, Hu W (2009) Preparation and microwave absorption properties of Ni-Fe3O4 hollow spheres. Mater Sci Eng B 164:112–115CrossRefGoogle Scholar
  66. 66.
    Zhang Y, Zhang X, Quan B, Ji G, Liang X, Liu W, Du Y (2017) A facile self-template strategy for synthesizing 1D porous Ni@C nanorods towards efficient microwave absorption. Nanotechnology 28:115704CrossRefGoogle Scholar
  67. 67.
    Zhao B, Shao G, Fan B, Zhao W, Zhang R (2015) Enhanced microwave absorption capabilities of Ni microspheres after coating with SnO2 nanoparticles. J Mater Sci Mater Electron 26:5393–5399CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Linxue Zhang
    • 1
  • Yan Zong
    • 1
  • Zhaoxin Li
    • 1
    • 2
  • Kexun Huang
    • 2
  • Yong Sun
    • 1
  • Yingying Lan
    • 1
  • Hongjing Wu
    • 4
  • Xinghua Li
    • 1
    • 3
  • Xinliang Zheng
    • 1
  1. 1.School of PhysicsNorthwest UniversityXi’anChina
  2. 2.Institute of Photonics and Photo-Technology Provincial Key Laboratory of Photoelectronic TechnologyXi’anChina
  3. 3.School of Chemical EngineeringNorthwest UniversityXi’anChina
  4. 4.Department of Applied PhysicsNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations