Journal of Materials Science

, Volume 53, Issue 12, pp 8887–8900 | Cite as

Biocompatible nanoclusters of O-carboxymethyl chitosan-coated Fe3O4 nanoparticles: synthesis, characterization and magnetic heating efficiency

  • P. H. Linh
  • N. V. Chien
  • D. D. Dung
  • P. H. Nam
  • D. T. Hoa
  • N. T. N. Anh
  • L. V. Hong
  • N. X. Phuc
  • P. T. Phong
Chemical routes to materials

Abstract

In this work, we developed a polymer encapsulation of Fe3O4 nanoparticles as a core–shell nanocluster with different sizes to investigate the cluster structure effect on their magnetic properties and magnetic heating behavior. Well-dispersed nanoclusters of O-carboxymethyl chitosan-coated Fe3O4 nanoparticles were synthesized by microwave-assisted co-precipitation. The cluster sizes were tunable by varying the concentration of polymers used during synthesis. Nanoclusters present superparamagnetic behavior at room temperature with a reduction in saturation magnetization as a consequence of coating layer. The shift of blocking temperature to the higher value with increasing clusters size shows the stronger magnetic interaction in larger magnetic clusters. In a low alternating magnetic field with frequency of 178 Hz and amplitude of 103 Oe, nanoclusters offer a high heating efficiency. A maximum specific absorption rate of 204 W/g is observed in the sample with hydrodynamic size of 53 nm. In vitro cytotoxicity analysis performed on HeLa cells verified that nanoclusters show a good biocompatibility and can be an excellent candidate for applications in hyperthermia cancer treatment.

Notes

Acknowledgements

The Science and Technology Project of Vietnam Academy of Science and Technology (Grant No. VAST.ĐLT.05/16-17) supported this work. The authors thank Prof. Nguyen Thi Quy and Dr. Hoang Thi My Nhung, Faculty of Biology, VNU University of Science, for their support in cytotoxicity assay.

References

  1. 1.
    Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:144–157CrossRefGoogle Scholar
  2. 2.
    Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112(11):5818–5878CrossRefGoogle Scholar
  3. 3.
    Deatsch AE, Evans BA (2014) Heating efficiency in magnetic nanoparticle hyperthermia. J Magn Magn Mater 354:163–172CrossRefGoogle Scholar
  4. 4.
    Mehdaoui B, Meffre A, Lacroix LM, Carrey J, Lachaize S, Gougeon M, Respaud M, Chaudret B (2010) Large specific absorption rates in the magnetic hyperthermia properties of metallic iron nanocubes. J Magn Magn Mater 322:L49–L52CrossRefGoogle Scholar
  5. 5.
    Johannsen M, Gneveckow U, Taymoorian K, Thiesen B, Waldöfner N, Scholz R, Cho CH, Jordan A, Wust P, Loening SA (2007) Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 52:131CrossRefGoogle Scholar
  6. 6.
    Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103:317–324CrossRefGoogle Scholar
  7. 7.
    Laurent S, Dutz S, Häfeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 166:8–23CrossRefGoogle Scholar
  8. 8.
    Lartigue L, Hugounenq P, Alloyeau D, Clarke SP, Levy M, Bacri JC, Ménager C (2012) Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents. ACS Nano 6:10935–10949CrossRefGoogle Scholar
  9. 9.
    Qiu P, Jensen C, Charity N, Towner R, Mao C (2010) Oil phase evaporation-induced self-assembly of hydrophobic nanoparticles into spherical clusters with controlled surface chemistry in an oil-in-water dispersion and comparison of behaviours of individual and clustered iron oxide nanoparticles. J Am Chem Soc 132:17724–17732CrossRefGoogle Scholar
  10. 10.
    Serantes D, Simeonidis K, Angelakeris M, Chubykalo-Fesenko O, Marciello M, Morales M, Baldomir D, Martinez-Boubeta C (2014) Multiplying magnetic hyperthermia response by nanoparticle assembling. J Phys Chem C 118:5927–5934CrossRefGoogle Scholar
  11. 11.
    Hedayatnasab Z, Abnisa F, Daud WMAW (2017) Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater Des 123:174–196CrossRefGoogle Scholar
  12. 12.
    Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324:903–915CrossRefGoogle Scholar
  13. 13.
    Kumar CSSR, Mohammad F (2011) Magnetic nano materials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63:789–808CrossRefGoogle Scholar
  14. 14.
    Qu J, Liu G, Wang Y, Hong R (2010) Preparation of Fe3O4–chitosan nanoparticles used for hyperthermia. Adv Powder Technol 21:461–467CrossRefGoogle Scholar
  15. 15.
    Soares PIP, Machado D, Laia C, Pereira LCJ, Joana TC, Ferreira IMM, Novo CMM, Paulo J (2016) Thermal and magnetic properties of chitosan–iron oxide nanoparticles. Carbohydr Polym 149:382–390CrossRefGoogle Scholar
  16. 16.
    Zamora-Moraa V, Fernández-Gutiérreza M, González-Gómeza Á, Sanzc B, Romána JS, Goyac GF, Hernándeza R, Mijangos C (2017) Chitosan nanoparticles for combined drug delivery and magnetic hyperthermia: from preparation to in vitro studies. Carbohydr Polym 157:361–370CrossRefGoogle Scholar
  17. 17.
    Zhu A, Yuan L, Dai S (2008) Preparation of well-dispersed superparamagnetic iron oxide nanoparticles in aqueous solution with biocompatible N-succinyl-O-carboxymethylchitosan. J Phys Chem C 112:5432–5438CrossRefGoogle Scholar
  18. 18.
    Shen S, Kong F, Guo X, Wu L, Shen H, Xie M, Wang X, Jin Y, Ge Y (2013) CMCTS stabilized Fe3O4 particles with extremely low toxicity as highly efficient near-infrared photothermal agents for in vivo tumor ablation. Nanoscale 5(17):8056–8066CrossRefGoogle Scholar
  19. 19.
    Li H, Li Z, Zhao J, Tang B, Chen Y, Hu Y, He Z, Wang Y (2014) Carboxymethyl chitosan-folic acid-conjugated Fe3O4@SiO2 as a safe and targeting antitumor nanovehicle in vitro. Nanoscale Res Lett 9:146–157CrossRefGoogle Scholar
  20. 20.
    Bekovic M, Hamler A (2010) Determination of the heating effect of magnetic fluid in alternating magnetic field. IEEE Trans Magn 46(2):552–555CrossRefGoogle Scholar
  21. 21.
    Freire TM, Dutra LMU, Queiroz DC, Ricardo NMPS, Barreto K, Frederik JCD, Wurm R, Sousa CP, Correia AN, Lima-Neto P, Fechine PBA (2016) Fast ultrasound assisted synthesis of CHITOSAN-based magnetite nanocomposite as a modified electrode sensor. Carbohydr Polym 151:760–769CrossRefGoogle Scholar
  22. 22.
    Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Rel 65(1–2):271–281CrossRefGoogle Scholar
  23. 23.
    Oluwasina OO, Olagboye AS, Boboye A, Hassan FG (2017) Carboxymethyl chitosan zinc supplement: preparation, physicochemical, and preliminary antimicrobial analysis. Cogent Chemistry 3:1294470–1294482CrossRefGoogle Scholar
  24. 24.
    Thirumavalavan M, Huang K-L, Lee J-F (2013) Preparation and morphology studies of nano zinc oxide obtained using native and modified chitosans. Materials 6(9):4198–4212CrossRefGoogle Scholar
  25. 25.
    Wang H-D, Yang Q, Niu CH (2010) Functionalization of nanodiamond particles with N,O-carboxymethyl chitosan. Diam Relat Mater 19:441–444CrossRefGoogle Scholar
  26. 26.
    Reddy DHK, Lee S-M (2013) Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv Colloid Interface Sci 201–202:68–93CrossRefGoogle Scholar
  27. 27.
    He G, Chen X, Yin Y, Cai W, Ke W, Kong Y, Zheng H (2016) Preparation and antibacterial properties of O-carboxymethyl chitosan/lincomycin hydrogels. J Biomater Sci Polym Ed 27(4):370–384CrossRefGoogle Scholar
  28. 28.
    Britto DD, Campana-Filho SP (2004) A kinetic study on the thermal degradation of N,N,N-trimethylchitosan. Polym Degrad Stab 84:353–361CrossRefGoogle Scholar
  29. 29.
    Mourya V, Inamdar NN, Tiwari A (2010) Carboxymethyl chitosan and its applications. Adv Mater Lett 1(1):11–33CrossRefGoogle Scholar
  30. 30.
    Bruvera IJ, Mendoza ZP, Calatayud MP, Goya GF, Sánchez FH (2015) Determination of the blocking temperature of magnetic nanoparticles: the good, the bad, and the ugly. J Appl Phys 118:184304–184311CrossRefGoogle Scholar
  31. 31.
    Kechrakos D, Trohidou KN (2000) Interplay of dipolar interactions and grain-size distribution in the giant magnetoresistance of granular metals. Phys Rev B 62:3941–3951CrossRefGoogle Scholar
  32. 32.
    Vargas JM, Nunes WC, Socolovsky LM, Knobel M, Zanchet D (2005) Effect of dipolar interaction observed in iron-based nanoparticles. Phys Rev B 72:184422–184428CrossRefGoogle Scholar
  33. 33.
    Raap MBFV, Coral DF, Yu S, Muñoz GA, Sánchez FH, Roig A (2017) Anticipating hyperthermic efficiency of magnetic colloids using a semi-empirical model: a tool to help medical decisions. Phys Chem Chem Phys 19:7176–7187CrossRefGoogle Scholar
  34. 34.
    Allia P, Coisson M, Tiberto P, Vinai F, Knobel M, Novak MA, Nunes WC (2001) Granular Cu–Co alloys as interacting superparamagnets. Phys Rev B 64:144420–144432CrossRefGoogle Scholar
  35. 35.
    Liu Z, Bai H, Sun DD (2011) Facile fabrication of porous chitosan/TiO2/Fe3O4 microspheres with multifunction for water purifications. New J Chem 35:137–140CrossRefGoogle Scholar
  36. 36.
    Khalkhali M, Sadighian S, Rostamizadeh K, Khoeini F, Naghibi M, Bayat N, Habibizadeh M, Hamidi M (2015) Synthesis and characterization of dextran coated magnetite nanoparticles for diagnostics and therapy. Bioimpacts 5(3):141–150CrossRefGoogle Scholar
  37. 37.
    Guardia PL, Labarta A, Batlle X (2011) Tuning the size, the shape, and the magnetic properties of iron oxide nanoparticles. J Phys Chem C 15:390–396CrossRefGoogle Scholar
  38. 38.
    Goya GF, Berquó TS, Fonseca FC, Morales MP (2003) Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 94:3520–3528CrossRefGoogle Scholar
  39. 39.
    Zélis PM, Muraca D, González JS, Pasquevich GA, Alvarez VA, Pirota KR, Sánchez FH (2013) Magnetic properties study of iron-oxide nanoparticles/PVA ferrogels with potential biomedical applications. J Nanopart Res 15:1613–1625CrossRefGoogle Scholar
  40. 40.
    Liu XL, Fan HM, Yi JB, Yang Y, Choo ESG, Xue JM, Fana DD, Ding J (2012) Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents. J Mater Chem 22:8235–8244CrossRefGoogle Scholar
  41. 41.
    Sadat ME, Patel R, Sookoor J, Bud’ko SL, Ewing RC, Zhang J, Xu H, Wang Y, Pauletti GM, Mast DB, Shi D (2014) Effect of Spatial Confinement on Magnetic Hyperthermia via Dipolar Interactions in Fe3O4 Nanoparticles for Biomedical Applications. Mater Sci Eng C Mater Biol Appl 42:52–63CrossRefGoogle Scholar
  42. 42.
    Urtizberea A, Natividad E, Arizaga A, Castro M, Mediano A (2010) Specific absorption rates and magnetic properties of ferrofluids with interaction effects at low concentrations. J Phys Chem C 114:4916–4922CrossRefGoogle Scholar
  43. 43.
    Gawali SL, Barick BK, Barick KC, Hassan PA (2017) Effect of sugar alcohol on colloidal stabilization of magnetic nanoparticles for hyperthermia and drug delivery applications. J Alloys Compd 725:800–806CrossRefGoogle Scholar
  44. 44.
    Fortin J-P, Wilhelm C, Servais J, Ménager C, Bacri J-C, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129:2628–2635CrossRefGoogle Scholar
  45. 45.
    Hauser AK, Mathias R, Anderson KW, Hilt JZ (2015) The effects of synthesis method on the physical and chemical properties of dextran coated iron oxide nanoparticles. Mater Chem Phys 160:177–186CrossRefGoogle Scholar
  46. 46.
    Patil RM, Thorat ND, Shete PB, Otari SV, Tiwale BM, Pawar SH (2016) In vitro hyperthermia with improved colloidal stability and enhanced SAR of magnetic core/shell nanostructures. Mater Sci Eng, C 59:702–709CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • P. H. Linh
    • 1
  • N. V. Chien
    • 1
  • D. D. Dung
    • 2
  • P. H. Nam
    • 1
  • D. T. Hoa
    • 1
  • N. T. N. Anh
    • 1
  • L. V. Hong
    • 1
  • N. X. Phuc
    • 1
    • 3
  • P. T. Phong
    • 4
    • 5
  1. 1.Institute of Materials ScienceVietnam Academy of Science and TechnologyHanoiVietnam
  2. 2.School of Engineering PhysicsHa Noi University of Science and TechnologyHanoiVietnam
  3. 3.Duy Tan UniversityDa Nang CityVietnam
  4. 4.Theoretical Physics Research Group, Advanced Institute of Materials ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  5. 5.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations