Journal of Materials Science

, Volume 53, Issue 12, pp 8826–8843 | Cite as

Studies of structural, optical, and electrical properties associated with defects in sodium-doped copper oxide (CuO/Na) nanostructures

  • Hafsa Siddiqui
  • Mohammad Ramzan Parra
  • M. S. Qureshi
  • M. M. Malik
  • Fozia Z. Haque


In the present paper, we report a detailed study on the sodium (Na) doping-induced modifications in the copper oxide (CuO) nanostructure and its properties. A facile and sustainable sol–gel synthesis approach was employed for the preparation of high-quality pristine CuO- and Na-doped CuO nanostructures(1.0, 3.0, 5.0 and 7.0 mol% doping levels, CuO/Na) with controlled shape and composition. Due to the remarkable difference in the ionic radii of Cu2+ (0.73 Å) and Na+ (1.02 Å), Na+ substitution in place of Cu2+ generates strain/distortions in CuO lattice. The XRD analysis reveal the structural alteration from monoclinic to cubic symmetry with increase in doping level and also reveal the phase purity up to 3% doping level, and beyond this (i.e., for 5 and 7% doping level) small amount of impurity phase corresponding to Na2O was observed. The FTIR results further confirmed the presence of the Na–Cu–O stretching vibrations at higher Na-doped samples. Morphology of the samples indicates that the Na-doped CuO nanostructures exhibit less agglomeration compared to pristine CuO nanoparticles. The presence of Na in CuO lattice were found to greatly enhances optical and electrical properties owing to the formation of defects like copper vacancies and oxygen vacancies at the grain boundaries of the nanoparticles with increased doping of Na.



Hafsa Siddiqui and Mohammad Ramzan Parra deeply acknowledge the UGC, New Delhi, and HRDG-CSIR for the financial support given in the form of UGC-MANF videno. F1-17.1/2011-12/MANF-MUS-MAD-4694 and CSIR-SRF Ack. No. 163320/2K14/1, respectively. Authors would like to acknowledge the Director-UGC-DAE-CSR, Indore Centre for performing XRD, Raman, FTIRand UV–Vis–NIR measurements. The authors are grateful to the USIF, Aligarh Muslim University, for providing the TEM facility.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests. Also all authors are entirely responsible for the content and writing of the paper.


  1. 1.
    Siddiqui H, Parra MR, Pandey P, Singh N, Qureshi MS, Haque FZ (2012) A review: synthesis, characterization and cell performance of Cu2O based material for solar cells. Orient J Chem 28(3):1533–1545CrossRefGoogle Scholar
  2. 2.
    Abu-Zied BM, Bawaked SM, Kosa SA, Schwieger W (2016) Impact of Gd-, La-, Nd- and Y-doping on the textural, electrical conductivity and N2O decomposition activity of CuO catalyst. Int J Electrochem Sci 11:2230–2246Google Scholar
  3. 3.
    Abu-Zied BM, Bawaked SM, Kosa SA, Schwieger W (2016) Effect of some rare earth oxides doping on the morphology, crystallite size, electrical conductivity and N2O decomposition activity of CuO catalyst. Int J Electrochem Sci 11:1568–1580Google Scholar
  4. 4.
    Bhuvaneshwari S, Gopalakrishnan N (2016) Enhanced ammonia sensing characteristics of Cr doped CuO nanoboats. J Alloys Compd 654:202–208CrossRefGoogle Scholar
  5. 5.
    Zhang Q, Zhang K, Xu D, Yang G, Huang H, Nie F, Liu C, Yang S (2014) CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog Mater Sci 60:208–337CrossRefGoogle Scholar
  6. 6.
    Siddiqui H, Qureshi MS, Haque FZ (2016) Effect of copper precursor salts: facile and sustainable synthesis of controlled shaped copper oxide nanoparticles. Optik 127:4726–4730CrossRefGoogle Scholar
  7. 7.
    Siddiqui H, Qureshi MS, Haque FZ (2017) pH-Dependent single-step rapid synthesis of CuO nanoparticles and their optical behavior. Opt Spectrosc 123(6):903–912CrossRefGoogle Scholar
  8. 8.
    Haque FZ, Parra MR, Siddiqui H, Singh N, Singh N, Pandey P, Mishra KM (2016) PVP assisted shape-controlled synthesis of self-assembled 1D ZnO and 3D CuO nanostructures. Opt Spectrosc 120(3):408–414CrossRefGoogle Scholar
  9. 9.
    Siddiqui H, Qureshi MS, Haque FZ (2014) Structural and optical properties of CuO nanocubes prepared through simple hydrothermal route. Int J Sci Eng Res 5(3):173–177Google Scholar
  10. 10.
    Devi LV, Selvalakshmi T, Sellaiyan S, Uedono A, Sivaji K, Sankar S (2017) Effect of La doping on the lattice defects and photoluminescence properties of CuO. J Alloys Compd 709:496–504CrossRefGoogle Scholar
  11. 11.
    Chiang CY, Shin Y, Ehrman S (2012) Li doped CuO film electrodes for photoelectrochemical cells. J Electrochem Soc 159(2):B227–B231. CrossRefGoogle Scholar
  12. 12.
    Chiang CY, Shin Y, Ehrman S (2014) Dopant effects on copper oxide photoelectrochemical cell water splitting. Energy Procedia 61:1799–1802CrossRefGoogle Scholar
  13. 13.
    Chuai M, Zhao Q, Yang T, Luo Y, Zhang M (2015) Synthesis and ferromagnetism study of Ce doped CuO dilute magnetic semiconductor. Mater Lett 161:205–207CrossRefGoogle Scholar
  14. 14.
    Faiz H, Siraj K, Khan MF, Irshad M, Majeed S, Rafique MS, Naseem S (2016) Microstructural and optical properties of dysprosium doped copper oxide thin films fabricated by pulsed laser deposition technique. J Mater Sci: Mater Electron 27:8197–8205Google Scholar
  15. 15.
    Wang D, Wang Y, Jiang T, Jia H, Yu M (2016) The preparation of M (M: Mn2+, Cd2+, Zn2+)-doped CuO nanostructures via the hydrothermal method and their properties. J Mater Sci: Mater Electron 27:2138–2145Google Scholar
  16. 16.
    Meneses CT, Duque JGS, Vivas LG, Knobel M (2008) Synthesis and characterization of TM-doped CuO (TM = Fe, Ni). J Non-Cryst Solids 354:4830–4832CrossRefGoogle Scholar
  17. 17.
    Hu X, Zhu Z, Chen C, Wen T, Zhao X, Xie L (2017) Highly sensitive H2S gas sensors based on Pd-doped CuO nanoflowers with low operating temperature. Sens Actuators B Chem 253:809–817CrossRefGoogle Scholar
  18. 18.
    Jichun P, Hongbin H, Dianxue W, Wang CG (2012) Influence of Ag doped CuO nanosheet arrays on electrochemical behaviors for supercapacitors. Electrochim Acta 75:208–212CrossRefGoogle Scholar
  19. 19.
    Panah SM, Radhakrishnan K, Tan HR, Yi R, Wong TI, Dalapati GK (2015) Titanium doped cupric oxide for photovoltaic application. Sol Energy Mater Sol Cells 140:266–274CrossRefGoogle Scholar
  20. 20.
    Asadi H, Vaezzadeh M (2017) Computational designing ultra-sensitive nano-composite based on boron doped and CuO decorated graphene to adsorb H2S and CO gaseous molecules. Mater Res Express 4(7):075039. CrossRefGoogle Scholar
  21. 21.
    Suda S, Fujitsu S, Koumoto K, Yanagida H (1992) The effect of atmosphere and doping on electrical conductivity of CuO. Jpn J Appl Phys 31:2488–2491CrossRefGoogle Scholar
  22. 22.
    Vidhya SN, Balasundaram ON, Chandramohan M (2015) Influence of doping concentration on the properties of Ga doped CuO thin films by the spray pyrolysis technique. J Optoelectron Adv Mater 17(7):963–967Google Scholar
  23. 23.
    Yildiz A, Horzum Ş, Serin N, Serin T (2014) Hopping conduction in In-doped CuO thin films. Appl Surf Sci 318:105–107CrossRefGoogle Scholar
  24. 24.
    Wu J, Hui KS, Hui KN, Li L, Chun HH, Cho YR (2016) Characterization of Sn-doped CuO thin films prepared by a sol–gel method. J Mater Sci: Mater Electron 27:1719–1724Google Scholar
  25. 25.
    Bayansal F, Gülen Y, Şahin B, Kahramana S, Çetinkar HA (2015) CuO nanostructures grown by the SILAR method: influence of Pb-doping on the morphological, structural and optical properties. J Alloys Compd 619:378–382CrossRefGoogle Scholar
  26. 26.
    Chand P, Gaur A, Kumar A, Gaur UK (2014) Structural and optical study of Li doped CuO thin films on Si (100) substrate deposited by pulsed laser deposition. Appl Surf Sci 307:280–286CrossRefGoogle Scholar
  27. 27.
    Thi TV, Rai AK, Gim J, Kim J (2014) Potassium-doped copper oxide nanoparticles synthesized by a solvothermal method as an anode material for high-performance lithium ion secondary battery. Appl Surf Sci 305:617–625CrossRefGoogle Scholar
  28. 28.
    Choi YH, Kim DH, Hong SH (2017) p-Type aliovalent Li(I) or Fe(III)-doped CuO hollow spheres self-organized by cationic complex ink printing: structural and gas sensing characteristics. Sens Actuators B Chem 243:262–270CrossRefGoogle Scholar
  29. 29.
    Wang RC, Lin SN, Liu JY (2017) Li/Na-doped CuO nanowires and nanobelts: enhanced electrical properties and gas detection at room temperature. J Alloys Compd 696:79–85CrossRefGoogle Scholar
  30. 30.
    Sahin B, Kaya T (2016) Highly improved hydration level sensing properties of copper oxide films with sodium and potassium doping. Appl Surf Sci 362:532–537CrossRefGoogle Scholar
  31. 31.
    Nasir M, Patra N, Ahmed MA, Shukla DK, Kumar S, Bhattacharya D, Prajapat CL, Phase DM, Jha SN, Biring S, Sen S (2017) Role of compensating Li/Fe incorporation in Cu0.945Fe0.055−xLixO: structural, vibrational and magnetic properties. RSC Adv 7:31970–31979CrossRefGoogle Scholar
  32. 32.
    Tabib A, Bouslama W, Sieber B, Addad A, Elhouicheta H, Férid M, Boukherrou R (2017) Structural and optical properties of Na doped ZnO nanocrystals: application to solar photocatalysis. Appl Surf Sci 396:1528–1538CrossRefGoogle Scholar
  33. 33.
    Chimupala Y, Hyett G, Simpson R, Mitchell R, Douthwaite R, MilneSJ BrydsonRD (2014) Synthesis and characterization of mixed phase anatase TiO2 and sodium-doped TiO2(B) thin films by low pressure chemical vapour deposition (LPCVD). RSC Adv 4:48507–48515CrossRefGoogle Scholar
  34. 34.
    Etefagh R, Azhir E, Shahtahmasebi N (2013) Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi. Sci Iran 20(3):1055–1058Google Scholar
  35. 35.
    Nasir M, Islam R, Ahmed MA, Ayaz S, Kumar G, Kumar S, Prajapat CL, Roussel F, Biring S, Sen S (2017) Cu1-xFexO: hopping transport and ferromagnetism. R Soc Open Sci 4:170339. CrossRefGoogle Scholar
  36. 36.
    Bhaumik A, Shearin AM, Patel R, Ghosh K (2014) Significant enhancement of optical absorption through nano-structuring of copper based oxide semiconductors: possible future materials for solar energy applications. Phys Chem Chem Phys 16:11054–11066CrossRefGoogle Scholar
  37. 37.
    Zeman M, Krc J (2007) Electrical and optical modelling of thin-film silicon solar cells. Mater Res Soc Symp Proc 989:A03-01. CrossRefGoogle Scholar
  38. 38.
    Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H (2004) Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432:488–492CrossRefGoogle Scholar
  39. 39.
    Siddiqui H, Qureshi MS, Haque FZ (2016) Surfactant assisted wet chemical synthesis of copper oxide (CuO) nanostructures and their spectroscopic analysis. Optik 127:2740–2747CrossRefGoogle Scholar
  40. 40.
    Parra MR, Haque FZ (2015) Poly (Ethylene Glycol) (PEG)-assisted shape-controlled synthesis of one-dimensional ZnO nanorods. Optik 126:1562–1566CrossRefGoogle Scholar
  41. 41.
    Parra MR, Haque FZ (2014) Aqueous chemical route synthesis and the effect of calcination temperature on the structural and optical properties of ZnO nanoparticles. J Mater Res Technol 4(3):363–369CrossRefGoogle Scholar
  42. 42.
    Parra MR, Haque FZ (2015) Optical investigation of various morphologies of ZnO nanostructures prepared by PVP-assisted wet chemical method. Opt Spectrosc 118(5):765–772CrossRefGoogle Scholar
  43. 43.
    Siddiqui H, Qureshi MS, Haque FZ (2016) Hexamine (HMT) assisted wet chemically synthesized CuO nanostructures with controlled morphology and adjustable optical behavior. Opt Quantum Electron 48:349–364CrossRefGoogle Scholar
  44. 44.
    Pandey P, Kurchania R, Haque FZ (2015) Structural, diffused reflectance and photoluminescence study of cerium doped ZnO nanoparticles synthesized through simple sol–gel method. Optik 126(21):3310–3315CrossRefGoogle Scholar
  45. 45.
    Jana R, Saha P, Pareek V, Basu A, Kapri S, Bhattacharyya S, Mukherjee GD (2016) High pressure experimental studies on CuO: indication of re-entrant multiferroicity at room temperature. Sci Rep 6:31610. CrossRefGoogle Scholar
  46. 46.
    Cretu V, Postica V, Mishra AK, Hoppe M, Tiginyanu I, Mishra YK, Chow L, de Leeuw NH, Adelung R, Lupan O (2016) Synthesis, characterization and DFT studies of zinc-doped copper oxide nanocrystals for gas sensing applications. J Mater Chem A 4:6527–6539CrossRefGoogle Scholar
  47. 47.
    Siddiqui H, Qureshi MS, Haque FZ (2014) One-step, template-free hydrothermal synthesis of CuO tetrapods. Optik 125:4663–4667CrossRefGoogle Scholar
  48. 48.
    Wu Z, Li Y, Gao L, Wang S, Fu G (2016) Synthesis of Na-doped ZnO hollow spheres with improved photocatalytic activity for hydrogen production. Dalton Trans 45:11145–11149CrossRefGoogle Scholar
  49. 49.
    Shrivastava M, Kumari R, Parra MR, Pandey P, Siddiqui H, Haque FZ (2017) Electrochemical synthesis of MoS2 quantum dots embedded nanostructured porous silicon with enhanced electroluminescence property. Opt Mater 73:763–771CrossRefGoogle Scholar
  50. 50.
    Meghana S, Kabra P, Chakraborty S, Padmavathy N (2015) Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv 5:12293–12299CrossRefGoogle Scholar
  51. 51.
    Wang Y, Jiang T, Meng D, Kong J, Jia H, Yu M (2015) Controllable fabrication of nanostructured copper compound on a Cu substrate by a one-step route. RSC Adv 5:16277–16283CrossRefGoogle Scholar
  52. 52.
    Chiu SH, Huang JCA (2013) Characterization of p-type CuAlO2 thin films grown by chemical solution deposition. Surf Coat Technol 231:239–242CrossRefGoogle Scholar
  53. 53.
    Fang M, He H, Lu B, Zhang W, Zhao B, Ye Z, Huang J (2011) Optical properties of p-type CuAlO2 thin film grown by rf magnetron sputtering. Appl Surf Sci 257:8330–8333CrossRefGoogle Scholar
  54. 54.
    Dongliang H, Jiahai H, Long Q, Jiangrui P, Zhenji S (2015) Optical and photocatalytic properties of Cu–Cu2O/TiO2 two-layer nanocomposite films on Si substrates. Rare Metal Mat Eng 44(8):1888–1893CrossRefGoogle Scholar
  55. 55.
    Kondofersky IT (2016) Design of photoelectrode morphologies for solar-driven water splitting. Ph.D. Thesis, Der Ludwig-Maximilians-Universität MünchenGoogle Scholar
  56. 56.
    Iqbal M, Thebo AA, Shah AH, Iqbal A, Thebo KH, Phulpoto S, Mohsin MA (2017) Influence of Mn-doping on the photocatalytic and solar cell efficiency of CuO nanowires. Inorg Chem Commun 76:71–76CrossRefGoogle Scholar
  57. 57.
    Gaur UK, Kumar A, Varma GD (2015) Fe-induced morphological transformation of 1-D CuO nanochains to porous nanofibers with enhanced optical, magnetic and ferroelectric properties. J Mater Chem C 3:4297–4307CrossRefGoogle Scholar
  58. 58.
    Zoolfakar AS, Rani RA, Morfa AJ, O’Mullane AP, Kalantar-zadeh K (2014) Nanostructured copper oxide semiconductors: a perspective on materials, synthesis methods and applications. J Mater Chem C 2:5247–5270CrossRefGoogle Scholar
  59. 59.
    Zhao X, Wang P, Yan Z, Ren N (2015) Room temperature photoluminescence properties of CuO nanowire arrays. Opt Mater 42:544–547CrossRefGoogle Scholar
  60. 60.
    Balamurugan B, Aruna I, Mehta BR, Shivaprasad SM (2004) Size-dependent conductivity-type inversion in Cu2O nanoparticles. Phys Rev B 69:165419. CrossRefGoogle Scholar
  61. 61.
    Sukhorukov YP, Loshkareva NN, Samokhvalov AA, Moskvin AS (1995) Absorption spectra of CuO single crystals near the absorption edge and the nature of the optical gap in copper oxides. J Exp Theor Phys 81(5):998–1002Google Scholar
  62. 62.
    Chowdhury A, Bijalwan PK, Sahu RK (2014) Investigations on the role of alkali to obtain modulated defect concentrations for Cu2O thin films. Appl Surf Sci 289:430–436CrossRefGoogle Scholar
  63. 63.
    Balamurugan B, Mehta B, Avasthi D, Singh F, Arora A, Rajalakshmi M, Raghavan G, Tyagi A, Shivaprasad S (2002) Modifying the nanocrystalline characteristics-structure, size, and surface states of copper oxide thin films by high-energy heavy-ion irradiation. J Appl Phys 92:3304–3310CrossRefGoogle Scholar
  64. 64.
    Lin G, Zhao F, Zhao Y, Zhang D, Yang L, Xue X, Wang X, Qu C, Li Q, Zhang L (2016) Luminescence properties and mechanisms of CuI thin films fabricated by vapor iodization of copper films. Materials (Basel) 9(12):E990. CrossRefGoogle Scholar
  65. 65.
    Ahrens LH, Press F, Runcorn SK (2013) Physics and chemistry of the earth: progress series, vol 6. Elsevier Publication, Amsterdam, p 522Google Scholar
  66. 66.
    Lai JJ, Lin YJ, Chen YH, Chang HC, Liu CJ, Zou YY, Shih YT, Wang MC (2011) Effects of Na content on the luminescence behavior, conduction type, and crystal structure of Na-doped ZnO films. J Appl Phys 110:013704–013708CrossRefGoogle Scholar
  67. 67.
    Bibi M, Javed QA, Abbas H, Baqi S (2017) Outcome of temperature variation on sol-gel prepared CuO nanostructure properties (optical and dielectric). Mater Chem Phys 192:67–71CrossRefGoogle Scholar
  68. 68.
    Oruç Ç, Altındal A (2017) Structural and dielectric properties of CuO nanoparticles. Ceram Int 43(14):10708–10714CrossRefGoogle Scholar
  69. 69.
    Rai C, Pandey P, Parra MR, Haque FZ (2014) Optical, dielectric and impedance studies of SiO2/MWCNT nanocomposite synthesized through in situ ultrasonication-assisted sol–gel method. J Adv Phys 3(3):194–204CrossRefGoogle Scholar
  70. 70.
    Priscilla SJ, Sivaji K, Vimaladevi L (2017) Synthesis and characterization of Na doped cupric oxide (CuO) nanoparticles. In: AIP conference proceedings, vol 1832. p 050128Google Scholar
  71. 71.
    Nakayama S, Kaji T, Notoya T, Osakai T (2008) Mechanistic study of the reduction of copper oxides in alkaline solutions by electrochemical impedance spectroscopy. Electrochim Acta 53:3493–3499CrossRefGoogle Scholar
  72. 72.
    Barsoukov E, Macdonald RJ (2005) Impedance spectroscopy: theory, experiment, and applications. 2nd edn. Wiley, HobokenGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Optical Nanomaterials Lab, Department of PhysicsMaulana Azad National Institute of TechnologyBhopalIndia

Personalised recommendations