Skip to main content
Log in

Structure, bonding, stability, electronic, thermodynamic and thermoelectric properties of six different phases of indium nitride

  • Computation
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Density functional investigation is carried out on the structure and bonding, stability, electronic, thermodynamic and thermoelectric properties on the six different phases of indium nitride. In addition to the monolayer hexagonal, zinc blende, wurtzite and rock salt, two more new possible phases, viz. caesium chloride and nickel arsenide, are also explored. The calculated crystal parameters for all six phases are compared with available experimental and theoretical values. Band structure and density of states are predicted for understanding their behaviour in metal–insulator–semiconductor domains as well as the contribution of their different atomic orbitals around the valence and conduction band edges. Phonon dispersion curves are generated to understand the dynamical stability of the considered indium nitride phases. Further, a detail comparative study is performed on various thermodynamic and thermoelectric properties of the dynamically stable indium nitride phases. An electron density contour is also generated for the stable phases to understand the nature bonding between indium and nitride in those phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Queren D, Avramescu A, Brüderl G, Breidenassel A, Schillgalies M, Lutgen S, Strau U (2009) 500 nm electrically driven InGaN based laser diodes. Appl Phys Lett 94:081119

    Article  Google Scholar 

  2. Zhang J, Kutlu S, Liu G, Tansu N (2011) High-temperature characteristics of Seebeck coefficients for AlInN alloys grown by metalorganic vapor phase epitaxy. J Appl Phys 110:043710

    Article  Google Scholar 

  3. Veal D, McConville CF, Schaff WJ (2009) Indium nitride and related alloys. Taylor & Francis, London

    Book  Google Scholar 

  4. Bierwagen O, Choi S, Speck JS (2011) Hall and seebeck profiling: determining surface, interface, and bulk electron transport properties in unintentionally doped InN. Phys Rev B 84:235302

    Article  Google Scholar 

  5. Sztein A, Ohta H, Bowers JE, DenBaars SP, Nakamura S (2011) High temperature thermoelectric properties of optimized InGaN. J Appl Phys 110:123709

    Article  Google Scholar 

  6. Wu J, Walukiewicz W, Yu KM, Ager Iii JW, Haller EE, Lu H, Nanishi Y (2002) Unusual properties of the fundamental band gap of InN. Appl Phys Lett 80:3967–3969

    Article  Google Scholar 

  7. Ghosh K, Rathore JS, Laha A (2017) Tuning the effective band gap and finding the optimal growth condition of InN thin films on GaN/sapphire substrates by plasma assisted molecular beam epitaxy technique. Superlattices Microstruct 101:405–414

    Article  Google Scholar 

  8. Ambacher O (1998) Growth and applications of group III-nitrides. J Phys Appl Phys 31:2653

    Article  Google Scholar 

  9. Elahi SM, Salehi H, Abolhassani MR, Farzan M (2016) A comparison of the structural, electronic, optical and elastic properties of wurtzite, zinc-blende and rock salt TlN: a DFT study. Acta Phys Pol A 130:758–768

    Article  Google Scholar 

  10. Dick KA, Caroff P, Bolinsson J, Messing ME, Johansson J, Deppert K, Samuelson L (2010) Control of III–V nanowire crystal structure by growth parameter tuning. Semicond Sci Technol 25:024009

    Article  Google Scholar 

  11. Peng F, Han Y, Fu H, Cheng X (2008) Phase transition, and elastic and thermodynamic properties of InN derived from first-principles and the quasi-harmonic Debye model (b). Physica status solidi 245:2743–2748

    Article  Google Scholar 

  12. Jung WS, Han OH, Chae SA (2007) Characterization of wurtzite indium nitride synthesized from indium oxide by In-115 MAS NMR spectroscopy. Mater Lett 61:3413–3415

    Article  Google Scholar 

  13. Miura A, Takei T, Kumada N (2012) Synthesis of wurtzite-type InN crystals by low-temperature nitridation of LiInO2 using NaNH2 flux. Cryst Growth Des 12:4545–4547

    Article  Google Scholar 

  14. Zhuang HL, Singh AK, Hennig RG (2013) Computational discovery of single-layer III–V materials. Phys Rev B 87:165415

    Article  Google Scholar 

  15. Goldhahn R, Winzer AT, Cimalla V, Ambacher O, Cobet C, Richter W, Schaff WJ (2004) Anisotropy of the dielectric function for wurtzite InN. Superlattices Microstruct 36:591–597

    Article  Google Scholar 

  16. Araujo RB, De Almeida JS, Ferreira Da Silva A (2013) Electronic properties of III-nitride semiconductors: a first-principles investigation using the Tran–Blaha modified Becke–Johnson potential. J Appl Phys 114:183702

    Article  Google Scholar 

  17. Zhang M, Zhang C, Liang D, Zhang R, Lu P, Wang S (2017) Structural and elastic properties of zinc-blende and wurtzite InN 1-x Bi x alloys. J Alloy Compd 708:323–327

    Article  Google Scholar 

  18. Kushwaha AK (2016) Lattice dynamical properties of group-III Nitrides AN (A = B, Al, Ga and In) in zinc-blende phase. Int J Thermophys 37:3–30

    Article  Google Scholar 

  19. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864

    Article  Google Scholar 

  20. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133

    Article  Google Scholar 

  21. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  Google Scholar 

  22. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Dal Corso A (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502

    Article  Google Scholar 

  23. Ashcroft NW, Mermin ND (1976) Solid state physics. Cengage Learning. Inc., New York

    Google Scholar 

  24. Kokalj A (2003) Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comput Mater Sci 28:155–168

    Article  Google Scholar 

  25. Yip S (ed) (2007) Handbook of materials modeling. Springer, Berlin

    Google Scholar 

  26. Baroni S, De Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515–562

    Article  Google Scholar 

  27. Madsen GK, Singh DJ (2006) BoltzTraP. A code for calculating band-structure dependent quantities. Comput Phys Commun 175:67–71

    Article  Google Scholar 

  28. Scheidemantel TJ, Ambrosch-Draxl C, Thonhauser T, Badding JV, Sofo JO (2003) Transport coefficients from first-principles calculations. Phys Rev B 68:125210

    Article  Google Scholar 

  29. Jodin L, Tobola J, Pecheur P, Scherrer H, Kaprzyk S (2004) Effect of substitutions and defects in half-Heusler FeVSb studied by electron transport measurements and KKR-CPA electronic structure calculations. Phys Rev B 70:184207

    Article  Google Scholar 

  30. Stampfl C, Van de Walle CG (1999) Density-functional calculations for III–V nitrides using the local-density approximation and the generalized gradient approximation. Phys Rev B 59:5521

    Article  Google Scholar 

  31. Saoud FS, Plenet JC, Henini M (2012) Structural, electronic and vibrational properties of InN under high pressure. Physica B 407:1008–1013

    Article  Google Scholar 

  32. Mancera L, Rodríguez JA, Takeuchi N (2004) Theoretical study of the stability of wurtzite, zinc-blende, NaCl and CsCl phases in group IIIB and IIIA nitrides (b). Physica status solidi 241:2424–2428

    Article  Google Scholar 

  33. Furthmüller J, Hahn PH, Fuchs F, Bechstedt F (2005) Band structures and optical spectra of InN polymorphs: influence of quasiparticle and excitonic effects. Phys Rev B 72:205106

    Article  Google Scholar 

  34. Wang Y, Yin H, Cao R, Zahid F, Zhu Y, Liu L, Guo H (2013) Electronic structure of III–V zinc-blende semiconductors from first principles. Phys Rev B 87:235203

    Article  Google Scholar 

  35. Wyckoff RWG (1963) Fluorite structure, vol 1. Crystal structures. Interscience Publishers, New York, p 239

    Google Scholar 

  36. Ueno M, Yoshida M, Onodera A, Shimomura O, Takemura K (1994) Stability of the wurtzite-type structure under high pressure: GaN and InN. Phys Rev B 49:14

    Article  Google Scholar 

  37. Duan M-Y, He L, Xu M et al (2010) Structural, electronic, and optical properties of wurtzite and rocksalt InN under pressure. Phys Rev B 81:033102

    Article  Google Scholar 

  38. Xia Q, Xia H, Ruoff AL (1994) New crystal structure of indium nitride: a pressure-induced rocksalt phase. Mod Phys Lett B 08:345–350

    Article  Google Scholar 

  39. Christensen NE, Gorczyca I (1994) Optical and structural properties of III–V nitrides under pressure. Phys Rev B 50:4397–4415

    Article  Google Scholar 

  40. Dufek P, Blaha P, Schwarz K (1994) Applications of Engel and Vosko’s generalized gradient approximation in solids. Phys Rev B 50:7279

    Article  Google Scholar 

  41. Borges PD, Scolfaro L (2014) Electronic and thermoelectric properties of InN studied using ab initio density functional theory and Boltzmann transport calculations. J Appl Phys 116:223706

    Article  Google Scholar 

  42. Becke AD, Johnson ER (2006) A simple effective potential for exchange. Chicago

  43. Semchinova OK, Aderhold J, Graul J, Filimonov A, Neff H (2003) Photoluminescence, depth profile, and lattice instability of hexagonal InN films. Appl Phys Lett 83:5440–5442

    Article  Google Scholar 

  44. Jin H, Zhao GL, Bagayoko D (2007) Calculated optical properties of wurtzite InN. J Appl Phys 101:033123

    Article  Google Scholar 

  45. Perdew JP, Yang W, Burke K et al (2017) Understanding band gaps of solids in generalized Kohn–Sham theory. Proc Natl Acad Sci USA 114:2801–2806

    Article  Google Scholar 

  46. Pauling L (1960) The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry, vol 18. Cornell University Press, Ithaca

    Google Scholar 

Download references

Acknowledgements

DRR is thankful to the SERB, New Delhi, Govt. of India for financial support (Grant No. EMR/2016/005830). VK is thankful to the SERB, New Delhi, for his fellowship. DRR and VK are also thankful for the high-performance computing facility at CDAC, Pune and IUAC, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debesh R. Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Roy, D.R. Structure, bonding, stability, electronic, thermodynamic and thermoelectric properties of six different phases of indium nitride. J Mater Sci 53, 8302–8313 (2018). https://doi.org/10.1007/s10853-018-2176-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2176-9

Keywords

Navigation