Journal of Materials Science

, Volume 53, Issue 11, pp 8074–8085 | Cite as

Synthesis and sintering of (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxides obtained by wet chemical methods

  • Mattia Biesuz
  • Luca Spiridigliozzi
  • Gianfranco Dell’Agli
  • Mauro Bortolotti
  • Vincenzo M. Sglavo
Ceramics
  • 228 Downloads

Abstract

Entropy-stabilized oxides represent a novel family of advanced ceramic materials with attractive functional properties. In this work, entropy-stabilized oxides, in the system (Mg, Co, Ni, Cu, Zn)O, were produced by co-precipitation and hydrothermal synthesis. Although TG/DTA and XRD analyses of as-synthetized powders point out complex thermal evolution, in both cases the desired single-phase rock salt solid solution was obtained after a proper thermal treatment. The dilatometric analysis points out the excellent sinterability of the obtained powders, which were successfully consolidated for the first time reaching nearly full density (~ 97%) at relatively low temperature (1050 °C).

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Rost CM, Sachet E, Borman T et al (2015) Entropy-stabilized oxides. Nat Commun 6:8485CrossRefGoogle Scholar
  2. 2.
    Rak Z, Rost CM, Lim M et al (2016) Charge compensation and electrostatic transferability in three entropy-stabilized oxides: results from density functional theory calculations. J Appl Phys 120:95105CrossRefGoogle Scholar
  3. 3.
    Rost C (2016) Entropy-stabilized oxides: explorations of a novel class of multicomponent materials. North Carolina State University, RaleighGoogle Scholar
  4. 4.
    Rost CM, Rak Z, Brenner DW, Maria J-P (2017) Local structure of the MgxNixCoxCuxZnxO(x = 0.2) entropy-stabilized oxide: an EXAFS study. J Am Ceram Soc 100:2732–2738CrossRefGoogle Scholar
  5. 5.
    Berardan D, Meena AK, Franger S et al (2017) Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides. J Alloys Compd 704:693–700CrossRefGoogle Scholar
  6. 6.
    Ragone DV (1995) Thermodynamic of materials, vol 2. Wiley, New YorkGoogle Scholar
  7. 7.
    Yalamanchili K, Wang F, Schramm IC et al (2017) Exploring the high entropy alloy concept in (AlTiVNbCr)N. Thin Solid Films 636:346–352CrossRefGoogle Scholar
  8. 8.
    Gild J, Zhang Y, Harrington T et al (2016) High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci Rep 6:37946CrossRefGoogle Scholar
  9. 9.
    Brenner D, Maria J, Opila B, et al (2015) The science of entropy stabilized ultra-high temperature. https://research.mse.ncsu.edu/entropysciencemuri/wp-content/uploads/sites/7/2016/08/NSMMS-Brenner.pdf
  10. 10.
    Bérardan D, Franger S, Meena AK, Dragoe N (2016) Room temperature lithium superionic conductivity in high entropy oxides. J Mater Chem A 4:9536–9541CrossRefGoogle Scholar
  11. 11.
    Djenadic R, Sarkar A, Clemens O et al (2017) Multicomponent equiatomic rare earth oxides. Mater Res Lett 5:102–109CrossRefGoogle Scholar
  12. 12.
    Bérardan D, Franger S, Dragoe D et al (2016) Colossal dielectric constant in high entropy oxides. Phys Status Solidi Rapid Res Lett 10:328–333CrossRefGoogle Scholar
  13. 13.
    Sarkar A, Djenadic R, Usharani NJ et al (2017) Nanocrystalline multicomponent entropy stabilised transition metal oxides. J Eur Ceram Soc 37:747–754CrossRefGoogle Scholar
  14. 14.
    Spiridigliozzi L, Dell’agli G, Biesuz M et al (2016) Effect of the precipitating agent on the synthesis and sintering behavior of 20 mol % Sm-doped ceria. Adv Mater Sci Eng 2016:6096123CrossRefGoogle Scholar
  15. 15.
    Lutterotti L, Bortolotti M, Ischia G et al (2007) Rietveld texture analysis from diffraction images. Z Krist Suppl 1:125–130CrossRefGoogle Scholar
  16. 16.
    Ayask HK, Khaki JV, Haddad Sabzevar M (2015) Facile synthesis of copper oxide nanoparticles using copper hydroxide by mechanochemical process. J Ultrafine Grained Nanostruct Mater 48:37–44Google Scholar
  17. 17.
    Wang B, Lu X-Y, Tang Y (2015) Synthesis of snowflake-shaped Co3O4 with a high aspect ratio as a high capacity anode material for lithium ion batteries. J Mater Chem A 3:9689–9699CrossRefGoogle Scholar
  18. 18.
    Abbas SA, Jung KD (2016) Preparation of mesoporous microspheres of NiO with high surface area and analysis on their pseudocapacitive behavior. Electrochim Acta 193:145–153CrossRefGoogle Scholar
  19. 19.
    Dong H, Unluer C, Yang EH, Al-Tabbaa A (2017) Synthesis of reactive MgO from reject brine via the addition of NH4OH. Hydrometallurgy 169:165–172CrossRefGoogle Scholar
  20. 20.
    Shaporev AS, Ivanov VK, Baranchikov AE et al (2007) ZnO formation under hydrothermal conditions from zinc hydroxide compounds with various chemical histories. Russ J Inorg Chem 52:1811–1816CrossRefGoogle Scholar
  21. 21.
    Brown IWM, Mackenzie KJD, Gainsford GJ (1984) Thermal decomposition of the basic copper carbonates malachite and azurite. Thermochim Acta 74:23–32CrossRefGoogle Scholar
  22. 22.
    El-Shobaky GA, Ahmad AS, Al-Noaimi AN, El-Shobaky HG (1996) Thermal decomposition of basic cobalt and copper carbonates. J Therm Anal 46:1801–1808CrossRefGoogle Scholar
  23. 23.
    Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706CrossRefGoogle Scholar
  24. 24.
    Mittemeijer EJ (1992) Review: Analysis of the kinetics of phase transformations. J Mater Sci 27:3977–3987CrossRefGoogle Scholar
  25. 25.
    Chiang Y-M, Birnie D, Kingery PWD (1997) Physical ceramics: principles for ceramic science and engineering. Wiley, New YorkGoogle Scholar
  26. 26.
    Popa NC (1998) The (hkl) dependence of diffraction-line broadening caused by strain and size for all Laue groups in Rietveld refinement. J Appl Crystallogr 31:176–180CrossRefGoogle Scholar
  27. 27.
    Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics, 2nd edn. Wiley, New YorkGoogle Scholar
  28. 28.
    Peterson NL (1984) Point defects and diffusion mechanisms in the monoxides of the iron-group metals. Mater Sci Forum 1:85–107CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Industrial EngineeringUniversity of TrentoTrentoItaly
  2. 2.Research Unit of TrentoINSTMFlorenceItaly
  3. 3.Department of Civil and Mechanical EngineeringUniversity of Cassino and Southern LazioCassinoItaly

Personalised recommendations