Novel metal–ceramic composite microstructures produced through the partial reduction of CoTiO3


Metal–ceramic composites exhibit desirable combinations of materials properties, but are limited by the complexity of processing, particularly for metal–ceramic nanocomposites. The in situ partial reduction technique is a simple processing method that can be used to produce tailorable metal–ceramic composite microstructures. In this work, in situ partial reduction was utilized to generate novel Co–Ti x O y composites, including nanocomposites, through the reduction of CoTiO3. By modifying the temperature (800–1400 °C) and time (1–8 h) of reduction, composites with varying cobalt particle size and cobalt grain size were fabricated. Differences in the cobalt crystal structure and nature of the titanium oxide phase were also observed. The lowest-temperature heat treatments resulted in metal–ceramic nanocomposites. The Co–Ti x O y composites were characterized through scanning electron microscopy, electron backscatter diffraction, transmission electron microscopy, and X-ray diffraction. The effect of processing variables on the properties of the composites was evaluated through nanoindentation of the embedded cobalt particles, and it was found that cobalt particle hardness is strongly correlated with grain size. The many useful properties of cobalt and titanium oxide, in conjunction with the range of controllable microstructures, demonstrate that the in situ partial reduction technique has excellent potential for metal–ceramic composite production.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14


  1. 1.

    Thermal expansion in rutile is anisotropic. This value has been derived from the volumetric coefficient of thermal expansion at 25 °C to approximate the average linear coefficient of thermal expansion in a randomly oriented polycrystalline rutile matrix.


  1. 1

    Kütemeyer M, Schomer L, Helmreich T et al (2016) Fabrication of ultra high temperature ceramic matrix composites using a reactive melt infiltration process. J Eur Ceram Soc 36:3647–3655.

    Article  Google Scholar 

  2. 2

    Wang D, Chen L, Wang Y-J et al (2017) W-ZrC composites prepared by reactive melt infiltration of Zr2Cu alloy into partially carburized W preforms. Int J Refract Met Hard Mater 67:125–128.

    Article  Google Scholar 

  3. 3

    Yao Y, Chen L (2014) Processing of B4C particulate-reinforced magnesium-matrix composites by metal-assisted melt infiltration technique. J Mater Sci Technol 30:661–665.

    Article  Google Scholar 

  4. 4

    Pines ML, Bruck HA (2006) Pressureless sintering of particle-reinforced metal–ceramic composites for functionally graded materials: part I. Porosity reduction models. Acta Mater 54:1457–1465.

    Article  Google Scholar 

  5. 5

    Liu B, Huang S, Van Humbeeck J, Vleugels J (2017) Pressureless liquid-phase sintered TiC x –NiTi/Ni cermets. Ceram Int 43:9512–9521.

    Article  Google Scholar 

  6. 6

    Ortiz AL, Candelario VM, Moreno R, Guiberteau F (2017) Near-net shape manufacture of B4C–Co and ZrC–Co composites by slip casting and pressureless sintering. J Eur Ceram Soc.

    Google Scholar 

  7. 7

    Jiang Y, Wang C, Liang S et al (2016) TiB2(-TiB)/Cu in situ composites prepared by hot-press with the sintering temperature just beneath the melting point of copper. Mater Charact 121:76–81.

    Article  Google Scholar 

  8. 8

    Han Y, Lin C, Han X et al (2017) Fabrication, interfacial characterization and mechanical properties of continuous Al2O3 ceramic fiber reinforced Ti/Al3Ti metal-intermetallic laminated (CCFR-MIL) composite. Mater Sci Eng A 688:338–345.

    Article  Google Scholar 

  9. 9

    Xiaoyong Z, Jun Z, Junling C, Yucheng W (2015) Structure and properties of W-Cu/AlN composites prepared via a hot press-sintering method. Rare Met Mater Eng 44:2661–2664.

    Article  Google Scholar 

  10. 10

    Watari T, Mori K, Torikai T, Matsuda O (1994) Preparation of Al2O3/metal composites using aluminum metal. In: Advanced Materials, vol 93. Elsevier, Amsterdam, pp 625–628

  11. 11

    Kim J-Y, Kim S-Y, Kim Y-S (1998) Functionally graded reaction layers produced by directed metal oxidation process. Mater Sci Eng A 245:118–126.

    Article  Google Scholar 

  12. 12

    Gu X, Hand RJ (1995) The production of reinforced aluminium/alumina bodies by directed metal oxidation. J Eur Ceram Soc 15:823–831.

    Article  Google Scholar 

  13. 13

    Backhaus-Ricoult M, Ricoult D (1988) Electron microscopy of internally reduced (Mg, Ni)O. J Mater Sci 23:1309–1316.

    Article  Google Scholar 

  14. 14

    Ricoult DL, Schmalzried H (1987) Internal reactions in the (Mg, Me)O system. J Mater Sci 22:2257–2266.

    Article  Google Scholar 

  15. 15

    Smith JA, Limthongkul P, Sass SL (1997) Microstructures and mechanical properties of NiMgO composites formed by displacement and partial reduction reactions. Acta Mater 45:4241–4250.

    Article  Google Scholar 

  16. 16

    Handwerker CA, Foecke TJ, Wallace JS et al (1995) Formation of alumina-chromia-chromium composites by a partial reduction reaction. Mater Sci Eng A 195:89–100.

    Article  Google Scholar 

  17. 17

    Ustundag E, Subramanian R, Vaia R et al (1993) In situ formation of metal–ceramic microstructures, including metal–ceramic composites, using reduction reactions. Acta Metall Mater 41:2153–2161.

    Article  Google Scholar 

  18. 18

    Üstündag E, Subramanian R, Dieckmann R, Sass SL (1995) In situ formation of metal–ceramic microstructures in the Ni2Al2O system by partial reduction reactions. Acta Metall Mater 43:383–389.

    Google Scholar 

  19. 19

    Üstündag E, Zhang Z, Stocker ML et al (1997) Influence of residual stresses on the evolution of micro-structure during the partial reduction of NiAl2O4. Mater Sci Eng A 238:50–65.

    Article  Google Scholar 

  20. 20

    Subramanian R, Üstündagˇ E, Sass SL, Dieckmann R (1995) In-situ formation of metal–ceramic microstructures by partial reduction reactions. Solid State Ion 75:241–255.

    Article  Google Scholar 

  21. 21

    Backhaus-Ricoult M, Hagege S (1992) metal–ceramic interfaces in internally reduced (Mg, Cu)O. Acta Metall Mater 40:S267–S274.

    Article  Google Scholar 

  22. 22

    Yu Z, Kracum M, Kundu A et al (2016) Microstructural evolution of a Cu and θ-Al2O3 composite formed by reduction of delafossite CuAlO2: a HAADF-STEM study. Cryst Growth Des 16:380–385.

    Article  Google Scholar 

  23. 23

    Kracum M, Kundu A, Harmer MP, Chan HM (2014) Novel interpenetrating Cu–Al2O3 structures by controlled reduction of bulk CuAlO2. J Mater Sci 50:1818–1824.

    Article  Google Scholar 

  24. 24

    Sun K, Takahashi R, Yagi J (1992) Reduction kinetics of cement-bonded natural ilmenite pellets with hydrogen. ISIJ Int 32:496–504

    Article  Google Scholar 

  25. 25

    Zhang G-H, Chou K-C, Zhao H-L (2012) Reduction kinetics of FeTiO3 powder by hydrogen. ISIJ Int 52:1986–1989

    Article  Google Scholar 

  26. 26

    Wang Y, Yuan Z, Matsuura H, Tsukihashi F (2009) Reduction extraction kinetics of titania and iron from an ilmenite by H2–Ar gas mixtures. ISIJ Int 49:164–170

    Article  Google Scholar 

  27. 27

    Si X, Lu X, Li C et al (2012) Phase transformation and reduction kinetics during the hydrogen reduction of ilmenite concentrate. Int J Miner Metall Mater 19:384–390.

    Article  Google Scholar 

  28. 28

    Zhao Y, Shadman F (1990) Kinetics and mechanism of ilmenite reduction with carbon monoxide. AIChE J 36:1433–1438.

    Article  Google Scholar 

  29. 29

    Bardi G, Gozzi D, Stranges S (1987) High temperature reduction kinetics of ilmenite by hydrogen. Mater Chem Phys 17:325–341.

    Article  Google Scholar 

  30. 30

    Chen M, Tang A, Xiao X (2015) Effect of milling time on carbothermic reduction of ilmenite. Trans Nonferrous Met Soc China 25:4201–4206.

    Article  Google Scholar 

  31. 31

    Lee G-G, Ha G-H (2006) Carbothermic reduction of oxide powder prepared from titanium dioxide and cobalt nitrate. Mater Trans 47:3007–3011.

    Article  Google Scholar 

  32. 32

    Arvanitidis I, Kapilashrami A, Sichen D, Seetharaman S (2000) Intrinsic reduction kinetics of cobalt- and nickel-titanates by hydrogen. J Mater Res 15:338–346.

    Article  Google Scholar 

  33. 33

    Shao Y, Chen W, Wold E, Paul J (1994) Dispersion and electronic structure of TiO2-supported cobalt and cobalt oxide. Langmuir 10:178–187

    Article  Google Scholar 

  34. 34

    Soled SL, Iglesia E, Fiato RA et al (2003) Control of metal dispersion and structure by changes in the solid-state chemistry of supported cobalt Fischer–Tropsch catalysts. Top Catal 26:101–109.

    Article  Google Scholar 

  35. 35

    Mahdavi S, Allahkaram SR (2013) Characteristics of electrodeposited cobalt and titania nano-reinforced cobalt composite coatings. Surf Coat Technol 232:198–203.

    Article  Google Scholar 

  36. 36

    Anjana PS, Sebastian MT (2006) Synthesis, characterization, and microwave dielectric properties of ATiO3 (A = Co, Mn, Ni) ceramics. J Am Ceram Soc 89:2114–2117.

    Google Scholar 

  37. 37

    Pharr GM, Oliver WC (1992) Measurement of thin film mechanical properties using nanoindentation. MRS Bull 17:28–33.

    Article  Google Scholar 

  38. 38

    Lide DR (2003) CRC handbook of chemistry and physics, 84th edn. CRC Press, Boca Raton

    Google Scholar 

  39. 39

    Hanaor DAH, Sorrell CC (2010) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874.

    Article  Google Scholar 

  40. 40

    Andersson S, Collen B, Kuylenstierna U, Magneli A (1957) Phase analysis studies on the titanium–oxygen system. Acta Chem Scand 11:1641–1652

    Article  Google Scholar 

  41. 41

    Andersson S, Collen B, Kruuse G et al (1957) Identification of titanium oxides by X-ray powder patterns. Acta Chem Scand 11:1653–1657

    Article  Google Scholar 

  42. 42

    Hao L, Kikuchi Y, Yoshida H et al (2017) Magnèli phase TinO2n−1 bulks prepared by SPS followed by carbon reduction and their thermoelectric performance. J Alloys Compd 722:846–851.

    Article  Google Scholar 

  43. 43

    Tsuyumoto I, Hosono T, Murata M (2006) Thermoelectric power in nonstoichiometric orthorhombic titanium oxides. J Am Ceram Soc 89:2301–2303.

    Google Scholar 

  44. 44

    Zheng L (2003) The preparation and oxygen-sensing properties of α-Ti3O5 thin film. Sens Actuat B Chem 88:115–119.

    Article  Google Scholar 

  45. 45

    Stem N, Chinaglia EF, dos Santos Filho SG (2011) Microscale meshes of Ti3O5 nano- and microfibers prepared via annealing of C-doped TiO2 thin films. Mater Sci Eng B 176:1190–1196.

    Article  Google Scholar 

  46. 46

    Nasu T, Tokoro H, Tanaka K et al (2014) Sol–gel synthesis of nanosized λ-Ti3O5 crystals. IOP Conf Ser Mater Sci Eng 54:012008.

    Article  Google Scholar 

  47. 47

    Ohkoshi S, Tsunobuchi Y, Matsuda T et al (2010) Synthesis of a metal oxide with a room-temperature photoreversible phase transition. Nat Chem 2:539–545.

    Article  Google Scholar 

  48. 48

    Yankin A, Vikhreva O, Balakirev V (1999) P–T–x diagram of the Co–Ti–O system. J Phys Chem Solids 60:139–143.

    Article  Google Scholar 

  49. 49

    Waldner P, Eriksson G (1999) Thermodynamic modelling of the system titanium–oxygen. Calphad 23:189–218.

    Article  Google Scholar 

  50. 50

    Hess JB, Barrett CS (1952) Transformation in cobalt–nickel alloys. J Met 4:645–647

    Google Scholar 

  51. 51

    Tolédano P, Krexner G, Prem M et al (2001) Theory of the martensitic transformation in cobalt. Phys Rev B 64:144104.

    Article  Google Scholar 

  52. 52

    Jiang M, Oikawa K, Ikeshoji T (2005) Molecular-dynamic simulations of martensitic transformation of cobalt. Metall Mater Trans A 36:2307–2314.

    Article  Google Scholar 

  53. 53

    Khlebnikova YV, Rodionov DP, Sazonova VA et al (2007) Study of the structure of cobalt single crystals during the β → α transformation. Phys Met Metallogr 103:609–618.

    Article  Google Scholar 

  54. 54

    Zhao J-C, Notis MR (1995) Kinetics of the fcc to hcp phase transformation and the formation of martensite in pure cobalt. Scr Metall Mater 32:1671–1676.

    Article  Google Scholar 

  55. 55

    Ray AE, Smith SR, Scofield JD (1991) Study of the phase transformation of cobalt. J Phase Equilib 12:644–647.

    Article  Google Scholar 

  56. 56

    Mirzaev DA, Schastlivtsev VM, Yakovleva IL et al (2002) Effect of grain size on kinetics of the polymorphic transformation and strength of cobalt. Phys Met Metallogr 93:558–562

    Google Scholar 

  57. 57

    Kajiwara S (1970) Stacking disorder in martensites of cobalt and its alloys. Jpn J Appl Phys 9:385.

    Article  Google Scholar 

  58. 58

    Owen EA, Jones DM (1954) Effect of grain size on the crystal structure of cobalt. Proc Phys Soc Sect B 67:456.

    Article  Google Scholar 

  59. 59

    Troiano AR, Tokich JL (1948) The transformation of cobalt. Trans Am Inst Min Metall Eng 175:728–741

    Google Scholar 

  60. 60

    Johnson RT, Dragsdorf RD (1967) The martensitic transformation in cobalt. J Appl Phys 38:618–626.

    Article  Google Scholar 

  61. 61

    Barnett WJ, Troiano AR (1948) The effect of grain size on the martensite transformations. Met Technol 4:1–2

    Google Scholar 

  62. 62

    Anthony JW, Bideaux RA, Bladh KW, Nichols MC (2005) Handbook of mineralogy, 1st edn. Mineralogical Society of America, Chantilly

    Google Scholar 

  63. 63

    Guang-Lai L, Guang-Hou W, Jian-Ming H (1999) Morphologies of rutile form TiO2 twins crystals. J Mater Sci Lett 18:1243–1246.

    Article  Google Scholar 

  64. 64

    Daneu N, Schmid H, Rečnik A, Mader W (2015) Atomic structure and formation mechanism of (301) rutile twins from Diamantina (Brazil). Am Miner 92:1789–1799.

    Article  Google Scholar 

  65. 65

    Williams DB, Carter CB (2009) Transmission electron microscopy, 2nd edn. Springer, New York

    Google Scholar 

  66. 66

    Karaagac O, Kockar H, Alper M (2011) Electrodeposited cobalt films: alteration caused by the electrolyte pH. J Supercond Nov Magn 24:801–804.

    Article  Google Scholar 

  67. 67

    Hyie KM, Resali NA, Abdullah WNR, Chong WT (2012) Synthesis and characterization of nanocrystalline pure cobalt coating: effect of pH. Proc Eng 41:1627–1633.

    Article  Google Scholar 

  68. 68

    Kozłowski W, Piwoński I, Szmaja W, Zieliński M (2016) Quantitative study of the effect of current density on the morphological and magnetic domain structures of electrodeposited nanocrystalline cobalt films. J Electroanal Chem 769:42–47.

    Article  Google Scholar 

  69. 69

    Karimpoor AA, Aust KT, Erb U (2007) Charpy impact energy of nanocrystalline and polycrystalline cobalt. Scr Mater 56:201–204.

    Article  Google Scholar 

  70. 70

    Su F, Liu C, Zuo Q et al (2013) A comparative study of electrodeposition techniques on the microstructure and property of nanocrystalline cobalt deposit. Mater Chem Phys 139:663–673.

    Article  Google Scholar 

  71. 71

    Kitakami O, Sato H, Shimada Y et al (1997) Size effect on the crystal phase of cobalt fine particles. Phys Rev B 56:13849–13854.

    Article  Google Scholar 

  72. 72

    de la Peña O′Shea VA, de la Piscina PR, Homs N et al (2009) Development of hexagonal closed-packed cobalt nanoparticles stable at high temperature. Chem Mater 21:5637–5643.

    Article  Google Scholar 

  73. 73

    de la Peña O’Shea VA, Campos-Martín JM, Fierro JLG (2004) Strong enhancement of the Fischer–Tropsch synthesis on a Co/SiO2 catalyst activate in syngas mixture. Catal Commun 5:635–638.

    Article  Google Scholar 

  74. 74

    Wu X, Tao N, Hong Y et al (2005) Strain-induced grain refinement of cobalt during surface mechanical attrition treatment. Acta Mater 53:681–691.

    Article  Google Scholar 

  75. 75

    Hitzenberger C, Karnthaler HP, Korner A (1985) Contrast analysis of intrinsic and extrinsic stacking faults in H.C.P. cobalt. Phys Status Solidi A 89:133–146.

    Article  Google Scholar 

  76. 76

    Grass RN, Dietiker M, Solenthaler C et al (2007) Grain growth resistance and increased hardness of bulk nanocrystalline fcc cobalt prepared by a bottom-up approach. Nanotechnology 18:035703.

    Article  Google Scholar 

  77. 77

    Roa JJ, Jiménez-Piqué E, Tarragó JM et al (2015) Berkovich nanoindentation and deformation mechanisms in a hardmetal binder-like cobalt alloy. Mater Sci Eng A 621:128–132.

    Article  Google Scholar 

  78. 78

    Roa JJ, Laguna-Bercero MA, Larrea A et al (2011) Mechanical properties of highly textured porous Ni–YSZ and Co–YSZ cermets produced from directionally solidified eutectics. Ceram Int 37:3123–3131.

    Article  Google Scholar 

  79. 79

    Eshelby JD, Frank FC, Nabarro FRN (1951) XLI. The equilibrium of linear arrays of dislocations. Lond Edinb Dublin Philos Mag J Sci 42:351–364.

    Article  Google Scholar 

  80. 80

    Cahoon JR, Broughton WH, Kutzak AR (1971) The determination of yield strength from hardness measurements. Metall Trans 2:1979–1983.

    Google Scholar 

  81. 81

    Selsing J (1961) Internal stresses in ceramics. J Am Ceram Soc 44:419.

    Article  Google Scholar 

  82. 82

    Gauthier M (1995) Engineered materials handbook Desk edition. ASM International, Materials Park

    Google Scholar 

  83. 83

    Cardarelli F (2008) Materials handbook: a concise desktop reference, 2nd edn. Springer, London

    Google Scholar 

  84. 84

    Wachtman JB Jr., Tefft WE, Lam DG Jr (1962) Elastic constants of rutile (TiO2). J Res Natl Bur Stand Phys Chem 66A:465–471

    Article  Google Scholar 

  85. 85

    Rao KVK, Naidu SVN, Iyengar L (1970) Thermal expansion of rutile and anatase. J Am Ceram Soc 53:124–126.

    Article  Google Scholar 

  86. 86

    Liu R, Shang J-X (2012) First-principles study of thermal properties and phase transition between β-Ti3O5 and λ-Ti3O5. Model Simul Mater Sci Eng 20:035020.

    Article  Google Scholar 

  87. 87

    Karimpoor AA, Erb U, Aust KT, Palumbo G (2003) High strength nanocrystalline cobalt with high tensile ductility. Scr Mater 49:651–656.

    Article  Google Scholar 

  88. 88

    Dille J, Charlier J, Winand R (1997) The structure and mechanical properties of thick cobalt electrodeposits. J Mater Sci 32:2637–2646.

    Article  Google Scholar 

Download references


The authors are grateful to Dr. Yan Wang for helpful discussions. This work was funded by the National Science Foundation under DMR Grant #1507955.

Author information



Corresponding author

Correspondence to Helen M. Chan.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anderson, K.P., Vinci, R.P. & Chan, H.M. Novel metal–ceramic composite microstructures produced through the partial reduction of CoTiO3. J Mater Sci 53, 8193–8210 (2018).

Download citation


  • Metal-ceramic Nanocomposites
  • Cobalt Particles
  • Cobalt Grains
  • Electron Backscatter Diffraction (EBSD)
  • Reduction Front