Advertisement

Journal of Materials Science

, Volume 53, Issue 11, pp 8545–8553 | Cite as

Elasticity and internal friction of magnesium alloys at room and elevated temperatures

  • Michaela Janovská
  • Peter Minárik
  • Petr Sedlák
  • Hanuš Seiner
  • Michal Knapek
  • František Chmelík
  • Miloš Janeček
  • Michal Landa
Metals
  • 217 Downloads

Abstract

Elastic moduli (Young’s modulus, shear modulus and bulk modulus) of three ultrafine-grained Mg-based alloys AZ31, AE42 and LAE442 were studied by resonant ultrasound spectroscopy. Evolution of these moduli and the corresponding high-frequency internal friction were measured in a temperature cycle between the room temperature and 310 °C, i.e., with heating above the recrystallization threshold temperature. The results reveal that the Li content in the LAE442 alloy has a strong impact on its elastic performance, resulting in a high E/ρ ratio, which is consistent with predictions of ab initio calculations. Simultaneously, the relaxation due to grain boundary sliding has significantly lower activation energy in LAE442 alloy.

Notes

Acknowledgements

This work was financially supported by the Czech Science Foundation Project Nos. 17-13573S and 14-13415S and by ERDF under the project “Nanomaterials centre for advanced applications,” Project No. CZ.02.1.01/0.0/0.0/15_003/0000485.

References

  1. 1.
    Yu Q, Qi L, Mishra RK, Li J, Minor AM (2013) Reducing deformation anisotropy to achieve ultrahigh strength and ductility in Mg at the nanoscale. Proc Natl Acad Sci 110(33):13289–13293CrossRefGoogle Scholar
  2. 2.
    Janeček M, Popov M, Krieger MG, Hellmig RJ, Estrin Y (2007) Mechanical properties and microstructure of a Mg alloy AZ31 prepared by equal-channel angular pressing. Mater Sci Eng, A 462(1–2):116–120CrossRefGoogle Scholar
  3. 3.
    Furui M, Xu C, Aida T, Inoue M, Anada H, Langdon TG (2005) Improving the superplastic properties of a two-phase Mg–8%Li alloy through processing by ECAP. Mater Sci Eng, A 410–411:439–442CrossRefGoogle Scholar
  4. 4.
    Phasha MJ, Ngoepe PE (2012) An alternative DFT-based model for calculating structural and elastic properties of random binary HCP, FCC and BCC alloys: Mg–Li system as test case. Intermetallics 21:88–96CrossRefGoogle Scholar
  5. 5.
    Dai JH, Wu X, Song Y (2013) Influence of alloying elements on phase stability and elastic properties of aluminum and magnesium studied by first principles. Comput Mater Sci 74:86–91CrossRefGoogle Scholar
  6. 6.
    Pavlic O, Ibarra-Hernandez W, Valencia-Jaime I, Singh S, Avendano-Franc G, Raabe D, Romero AH (2017) Design of Mg alloys: the effects of Li concentration on the structure and elastic properties in the Mg–Li binary system by first principles calculations. J Alloy Compd 691:15–25CrossRefGoogle Scholar
  7. 7.
    Olsson PAT (2015) First principles investigation of the finite temperature dependence of the elastic constants of zirconium, magnesium and gold. Comput Mater Sci 99:361–372CrossRefGoogle Scholar
  8. 8.
    Moitra A (2013) Grain size effect on microstructural properties of 3d nanocrystalline magnesium under tensile deformation. Comput Mater Sci 79:247–251CrossRefGoogle Scholar
  9. 9.
    Karewar S, Gupta N, Groh S, Martinez E, Caro A, Srinivasan SG (2017) Effect of Li on the deformation mechanisms of nanocrystalline hexagonal close packed magnesium. Comput Mater Sci 126:252–264CrossRefGoogle Scholar
  10. 10.
    Sheng G, Bhattacharyya S, Zhang H et al (2012) Effective elastic properties of polycrystals based on phase-field description. Mater Sci Eng, A 554:67–71CrossRefGoogle Scholar
  11. 11.
    Watanabe H, Mukai T, Sugioka M, Ishikawa K (2004) Elastic and damping properties from room temperature to 673 K in an AZ31 magnesium alloy. Scripta Mater 51:291–295CrossRefGoogle Scholar
  12. 12.
    Koller M, Sedlak P, Seiner H, Sevcik M, Landa M, Straska J, Janecek M (2015) An ultrasonic internal friction study of ultrafine-grained AZ31 magnesium alloy. J Mater Sci 50:808–818.  https://doi.org/10.1007/s10853-014-8641-1 CrossRefGoogle Scholar
  13. 13.
    Seiner H, Bodnárová L, Sedlák P, Janeček M, Srba O, Král R, Landa M (2010) Application of ultrasonic methods to determine elastic anisotropy of polycrystalline copper processed by equal-channel angular pressing. Acta Mater 58:235–247CrossRefGoogle Scholar
  14. 14.
    Leisure RG, Willis FA (1997) Resonant ultrasound spectroscopy. J Phys: Condens Matter 9:6001–6029Google Scholar
  15. 15.
    Sedlak P, Seiner H, Zidek J, Janovska M, Landa M (2014) Determination of all 21 independent elastic coefficients of generally anisotropic solids by resonant ultrasound spectroscopy: benchmark examples. Exp Mech 54:1073–1085CrossRefGoogle Scholar
  16. 16.
    Nowick AS, Berry BS (1972) Anelastic relaxation in crystalline solids. Academic Press, New YorkGoogle Scholar
  17. 17.
    Minarik P, Kral R, Pesicka J, Danis S, Janecek M (2016) Microstructure characterization of LAE442 magnesium alloy processed by extrusion and ECAP. Mater Charact 112:1–10CrossRefGoogle Scholar
  18. 18.
    Chang TC, Wang JY, Chu CL, Lee S (2006) Mechanical properties and microstructures of various Mg–Li alloys. Mater Lett 60:3272–3276CrossRefGoogle Scholar
  19. 19.
    Minarik P, Cizek J, Vesely J, Hruska P, Hadzima B, Kral R (2017) Nanocrystalline aluminium particles inside Mg–4Li–4Al–2RE magnesium alloy after severe plastic deformation. Mater Charact 127:248–252CrossRefGoogle Scholar
  20. 20.
    Slutsky LJ, Garland CW (1957) Elastic constants of magnesium from 4.2-degrees-K TO 300-degrees-K. Phys Rev 107:972–976CrossRefGoogle Scholar
  21. 21.
    Pugh SF (1954) Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag 45:823–843CrossRefGoogle Scholar
  22. 22.
    Stráská J, Stráský J, Minárik P, Janeček M, Hadzima B (2017) Continuous measurement of m-parameter for analyzing plastic instability in a superplastic ultra-fine grained magnesium alloy. Mater Sci Eng, A 684:110–114CrossRefGoogle Scholar
  23. 23.
    Minárik P, Kral R, Cizek J, Chmelik F (2016) Effect of different c/a ratio on the microstructure and mechanical properties in magnesium alloys processed by ECAP. Acta Mater 107:83–95CrossRefGoogle Scholar
  24. 24.
    Koike J, Ohyama R, Kobayashi T, Suzuki M, Maruyama K (2003) Grain-boundary sliding in AZ31 magnesium alloys at room temperature to 523 K. Mater Trans 44:445–451CrossRefGoogle Scholar
  25. 25.
    Haferkamp H, Boehm R, Holzkamp U, Jaschik C, Kaese V, Niemeyer M (2001) Alloy development, processing and applications in magnesium lithium alloys. Mater Trans 42:1160–1166CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of ThermomechanicsCzech Academy of SciencesPragueCzech Republic
  2. 2.Department of Physics of MaterialsCharles UniversityPrague 2Czech Republic

Personalised recommendations