The effect of Fe contents on the local structure and crystallization behavior of SiO2–CaO–P2O5–Fe2O3 glasses

  • Bin Li
  • Wenqin Luo
  • Yongya Wang
  • Yanhui Zhang
  • Haiyan Wu
Ceramics
  • 11 Downloads

Abstract

The glass and glass ceramics containing SiO2–CaO–Fe2O3–P2O5 were prepared by sol–gel method. The influence of the Fe contents on the crystallization and local structure of the glass and glass ceramics was systematically investigated. The crystal structure of the glass ceramics was identified by XRD characterization. Hematite phase can be precipitated from the glass matrix in all glass ceramics with various Fe contents, and the crystallographic parameters of hematite were determined by XRD Rietveld refinement. The crystallization kinetics of the glasses was investigated in detail. Relative low activation energies were obtained at low Fe contents. The local structure evolution of the glass and glass ceramics has been studied in-depth by means of FTIR and Mössbauer spectroscopy. Fe element is present both as network former and network modifier which significantly influenced the crystallization activation energies of the glasses. The results of this work may be of great significance for the material design and practical applications of bioactive magnetic glass ceramics for hyperthermia.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51372081 and No. 51401049), Science and Technology Program of Huzhou (2017GY02), the Natural Science Foundation of Zhejiang Province (LY13E020006 and LQ16E020001).

References

  1. 1.
    Li B, Luo W, Wang Y, Wu H, Zhang C (2016) Bioactive SiO2–CaO–P2O5 hollow nanospheres for drug delivery. J Non-Cryst Solids 447:98CrossRefGoogle Scholar
  2. 2.
    Popescu R, Magyari K, Vulpoi A, Trandafir D, Licarete E, Todea M, Ştefan R, Voica C, Vodnar D, Simon S (2016) Bioactive and biocompatible copper containing glass-ceramics with remarkable antibacterial properties and high cell viability designed for future in vivo trials. Biomater Sci 4:1252CrossRefGoogle Scholar
  3. 3.
    Jiang S, Zhang Y, Shu Y, Wu Z, Cao W, Huang W (2017) Amino-functionalized mesoporous bioactive glass for drug delivery. Biomed Mater 12:025017CrossRefGoogle Scholar
  4. 4.
    Wang Y, Li B, Luo W, Cao F (2017) Bioactivity of Fe2O3-CaO-SiO2 glass ceramics modified through the addition of P2O5 and TiO2. Ceram Int 43:6738CrossRefGoogle Scholar
  5. 5.
    Lee YK, Lee SB, Kim YU, Kim KN, Choi SY, Lee KH, Shim IB, Kim CS (2003) Effect of ferrite thermoseeds on destruction of carcinoma cells under alternating magnetic field. J Mater Sci 38:4221.  https://doi.org/10.1023/A:1026346109737 CrossRefGoogle Scholar
  6. 6.
    Leenakul W, Kantha P, Pisitpipathsin N, Rujijanagul G, Eitssayeam S, Pengpat K (2013) Structural and magnetic properties of SiO2–CaO–Na2O–P2O5 containing BaO–Fe2O3 glass–ceramics. J Magn Magn Mater 325:102CrossRefGoogle Scholar
  7. 7.
    Li B, Wang Y, Luo W, Li J, Li J (2017) Non-isothermal crystallization kinetics of Fe2O3 –CaO–SiO2 glass containing nucleation agent P2O5/TiO2. Crystallogr Rep 62:260CrossRefGoogle Scholar
  8. 8.
    Eniu D, Cacaina D, Coldea M, Valeanu M, Simon S (2005) Structural and magnetic properties of CaO–P2O5 -SiO2 -Fe2O3 glass-ceramics for hyperthermia. J Magn Magn Mater 293:310CrossRefGoogle Scholar
  9. 9.
    Ebisawa Y, Miyaji F, Kokubo T, Ohura K, Nakamura T (1997) Bioactivity of ferrimagnetic glass-ceramics in the system FeO–Fe2O3–CaO–SiO2. Biomaterials 18:1277CrossRefGoogle Scholar
  10. 10.
    Lee Y-K, Choi S-Y (1997) Controlled nucleation and crystallization in Fe2O3–CaO–SiO2 glass. J Mater Sci 32:431.  https://doi.org/10.1023/A:1018517819830 CrossRefGoogle Scholar
  11. 11.
    Islam MS, Kurawaki J, Kusumoto Y, Abdulla-Al-Mamun M, Mukhlish MZB (2011) Hydrothermal novel synthesis of neck-structured hyperthermia-suitable magnetic (Fe3O4, γ-Fe2O3 and α-Fe2O3) nanoparticles. J Sci Res 4:99Google Scholar
  12. 12.
    Lee YK, Choi SY (1996) Crystallization and properties of Fe2O3 –CaO–SiO2 glasses. J Am Ceram Soc 79:992CrossRefGoogle Scholar
  13. 13.
    Brentrup GJ, Moawad HMM, Santos LF, Rui MA, Jain H (2009) Structure of Na2O-CaO-P2O5 -SiO2 glass-ceramics with multimodal porosity. J Am Ceram Soc 92:249CrossRefGoogle Scholar
  14. 14.
    Liu JN, Zhu CF, Zhang MM, Zhang YF, Liu SJ, Yang XN (2017) Preparation and properties of ferromagnetic glass ceramics and glass fibers based on the composition of SiO2 -B2O3 -Fe2O3 -SrO. J Eur Ceram Soc 37:4707CrossRefGoogle Scholar
  15. 15.
    Shaharyar Y, Cheng JY, Han E, Maron A, Weaver J, Marcial J, Mccloy JS, Goel A (2016) Elucidating the effect of iron speciation (Fe2+/Fe3+) on crystallization kinetics of sodium aluminosilicate glasses. J Am Ceram Soc 99:2306CrossRefGoogle Scholar
  16. 16.
    Wang YY, Li B, Yu YL, Tang PS (2016) Evaluating the effects of chemical composition on induction heating ability of Fe2O3-CaO-SiO2 glass ceramics. Adv Mater Sci Eng 2016:2539468Google Scholar
  17. 17.
    Ying YX, Cable M, Ping ZZ, Williams JM (1992) Mössbauer study of crystallization of glasses in the system K2O-Na2O-CaO-MgO-Al2O3-SiO2. J Mater Sci 27:1137.  https://doi.org/10.1007/BF01142009 CrossRefGoogle Scholar
  18. 18.
    Sandu V, Greculeasa S, Kuncser A, Kuncser V (2016) Effect of P2O5 on the structural and magnetic properties of magnetite-based glass-ceramics. J Am Ceram Soc 99:4013CrossRefGoogle Scholar
  19. 19.
    Kubuki S, Iwanuma J, Takahashi Y, Akiyama K, Homonnay Z, Sinkó K, Kuzmann E, Nishida T (2014) Visible light activated catalytic effect of iron containing soda-lime silicate glass characterized by 57 Fe-Mössbauer spectroscopy. J Radioanal Nucl Chem 301:1CrossRefGoogle Scholar
  20. 20.
    Atalay S, Adiguzel HI, Atalay F (2001) Infrared absorption study of Fe2O3 -CaO-SiO2 glass ceramics. Mater Sci Eng A 304–306:796CrossRefGoogle Scholar
  21. 21.
    Hassaan MY, Saudi HA, Saad HMH, Mostafa AG, Ahmed MA, Iida Y, Kubuki S, Nishida T (2015) Structural study of glass and glass ceramics prepared with Egyptian Basalt. Silicon 7:383CrossRefGoogle Scholar
  22. 22.
    Kubuki S, Iwanuma J, Akiyama K, Homonnay Z, Kuzmann E, Nishida T (2013) Water cleaning ability and local structure of iron-containing soda-lime silicate glass. Hyperfine Interact 218:41CrossRefGoogle Scholar
  23. 23.
    Sandu V, Greculeasa S, Kuncser A, Nicolescu MS, Kuncser V (2017) Effect of Cr2O3 on the magnetic properties of magnetite-based glass-ceramics obtained by controlled crystallization of Fe-containing aluminoborosilicate glass. J Eur Ceram Soc 37:3089CrossRefGoogle Scholar
  24. 24.
    Takahashi Y, Kubuki S, Akiyama K, Sinkó K, Homonnay Z, Kuzmann E, Nishida T (2015) Photocatalytic effect and Mössbauer study of iron titanium silicate glass prepared by sol-gel method. Hyperfine Interact 232:51CrossRefGoogle Scholar
  25. 25.
    Sava BAC, Elisa M, Boroica L, Kuncser V, Valeanu M, Vasiliu IC, Feraru I, Iordanescu R (2016) Sol-gel preparation and structural investigations of silico-phosphate glasses doped with Fe ions. J Sol–Gel Sci Technol 81:294CrossRefGoogle Scholar
  26. 26.
    Stoch P, Stoch A (2013) Mössbauer spectroscopy study of 60P2O5-40Fe2O3 glass crystallization. Nukleonika 60:133Google Scholar
  27. 27.
    Reis ST, Pontuschka WM, Moguš-Milanković A, Partiti CSM (2017) Structural features of iron-phosphate glass. J Am Ceram Soc 100:1976CrossRefGoogle Scholar
  28. 28.
    Peplinski B, Adam C, Michaelis M, Kley G, Emmerling F, Simon FG (2009) Reaction sequences in the thermochemical treatment of sewage sludge ashes revealed by X-ray powder diffraction—a contribution to the European project SUSAN. Z Krist 30(Supplements):459CrossRefGoogle Scholar
  29. 29.
    Takeda T, Yamaguchi Y, Tomiyoshi S, Fukase M, Sugimoto M, Watanabe H (1968) Magnetic structure of Ca2Fe2O5. J Phys Soc Jpn 24:446CrossRefGoogle Scholar
  30. 30.
    Alizadeh P, Yekta BE, Gervei A (2004) Effect of Fe2O3 addition on the sinterability and machinability of glass-ceramics in the system MgO–CaO–SiO2–P2O5. J Eur Ceram Soc 24:3529CrossRefGoogle Scholar
  31. 31.
    Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand 57:217CrossRefGoogle Scholar
  32. 32.
    Kubuki S, Nishida T (2000) Effect of Fe2O3 content on the local structure and crystallization mechanism of calcium gallate glasses. J Radioanal Nucl Chem 246:43CrossRefGoogle Scholar
  33. 33.
    Nishida T (1994) 57Fe- and 119Sn-Mössbauer effect of oxide glasses. J Radioanal Nucl Chem 182:451CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Life SciencesHuzhou UniversityHuzhouChina
  2. 2.School of EngineeringHuzhou UniversityHuzhouChina
  3. 3.School of Material Science and EngineeringNortheastern UniversityShenyangChina

Personalised recommendations