Skip to main content
Log in

Zn–ZnO@TiO2 nanocomposite: a direct electrode for nonenzymatic biosensors

  • Biomaterials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this article, TiO2-modified ZnO nanotube arrays (NTAs) are successfully synthesized and used to prepare a nonenzymatic biosensor for the detection of glucose and hydrazine hydrate. In brief, the ZnO@TiO2 NTAs are synthesized on zinc foil by two steps of simple hydrothermal method. Therefore, it can be directly used as a working electrode and is not needed to be modified to other electrode surface by any means to form a sensor. In the oxidation of glucose and reduction reaction of hydrazine hydrate, it exhibits excellent electrocatalytic performance. Moreover, it has high sensitivity, a fast response time (less than 3 s), and a detection limit as low as 0.5 μM (S/N = 3) toward glucose and hydrazine hydrate respectively. In the selectivity of the target analyte, the Zn–ZnO@TiO2 nanocomposite electrode can effectively resist the influence of different interferent, including uric acid, dopamine, and l-cysteine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, de Bakker PI, Abecasis GR, Almgren P, Andersen G (2008) Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 40:638–645

    Article  Google Scholar 

  2. Shaw GW, Claremont DJ, Pickup JC (1991) In vitro testing of a simply constructed: highly stable glucose sensor suitable for implantation in diabetic patients. Biosens Bioelectron 6:401–406

    Article  Google Scholar 

  3. Hayat A, Marty JL (2014) Disposable screen printed electrochemical sensors: tools for environmental monitoring. Sensors 14:10432–10453

    Article  Google Scholar 

  4. Jr LC, Clark C Lyons (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    Google Scholar 

  5. Scognamiglio V (2013) Nanotechnology in glucose monitoring: advances and challenges in the last 10 years. Biosens Bioelectron 47:12–25

    Article  Google Scholar 

  6. Yoo E-H, Lee S-Y (2010) Glucose biosensors: an overview of use in clinical practice. Sensors 10:4558–4576

    Article  Google Scholar 

  7. Subramanian P, Niedziolka-Jonsson J, Lesniewski A, Wang Q, Li M, Boukherroub R, Szunerits S (2014) Preparation of reduced graphene oxide-Ni(OH)2 composites by electrophoretic deposition: application for non-enzymatic glucose sensing. J Mater Chem A 2:5525–5533

    Article  Google Scholar 

  8. Cho H, Jaworski J (2014) A portable and chromogenic enzyme-based sensor for detection of abrin poisoning. Biosens Bioelectron 54:667–673

    Article  Google Scholar 

  9. Peng B, Lu J, Balijepalli AS, Major TC, Cohan BE, Meyerhoff ME (2013) Evaluation of enzyme-based tear glucose electrochemical sensors over a wide range of blood glucose concentrations. Biosens Bioelectron 49:204–209

    Article  Google Scholar 

  10. Xu CL, Song ZQ, Xiang Q, Jin J, Feng XJ (2016) A high performance three-phase enzyme electrode based on superhydrophobic mesoporous silicon nanowire arrays for glucose detection. Nanoscale 8:7391–7395

    Article  Google Scholar 

  11. Updike SJ, Hicks GP (1967) The enzyme electrode. Nature 214:986–988

    Article  Google Scholar 

  12. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  Google Scholar 

  13. Lei Y, Yan X, Zhao J, Liu X, Song Y, Luo N, Zhang Y (2011) Improved glucose electrochemical biosensor by appropriate immobilization of nano-ZnO. Colloids Surf B 82:168–172

    Article  Google Scholar 

  14. Lei Y, Yan XQ, Luo N, Song Y, Zhang Y (2010) ZnO nanotetrapod network as the adsorption layer for the improvement of glucose detection via multiterminal electron-exchange. Colloids Surf A 361:169–173

    Article  Google Scholar 

  15. Zhang WD, Chen J, Jiang LC, Yu YX, Zhang JQ (2010) A highly sensitive nonenzymatic glucose sensor based on NiO-modified multi-walled carbon nanotubes. Microchim Acta 168:259–265

    Article  Google Scholar 

  16. Xiao F, Zhao FQ, Mei DP, Mo ZR, Zeng BZ (2009) Nonenzymatic glucose sensor based on ultrasonic-electrode position of bimetallic PtM (M = Ru, Pd and Au) nanoparticles on carbon nanotubes-ionic liquid composite film. Biosens Bioelectron 24:3481–3486

    Article  Google Scholar 

  17. Wang JX, Sun XW, Cai XP, Lei Y, Song L, Xie SS (2007) Nonenzymatic glucose sensor using freestanding single-wall carbon nanotube films. Electrochem Solid State Lett 10:J58–J60

    Article  Google Scholar 

  18. Gao HC, Wang YX, Xiao F, Ching CB, Duan HW (2012) Growth of copper nanocubes on graphene paper as free-standing electrodes for direct hydrazine fuel cells. J Phys Chem C 116:7719–7725

    Article  Google Scholar 

  19. Xu FG, Sun YJ, Zhang Y, Shi Y, Wen ZW, Li Z (2011) Graphene-Pt nanocomposite for nonenzymatic detection of hydrogen peroxide with enhanced sensitivity. Electrochem Commun 13:1131–1134

    Article  Google Scholar 

  20. Lu LM, Li HB, Qu F, Zhang XB, Shen GL, Yu RQ (2011) In situ synthesis of palladium nanoparticle-graphene nanohybrids and their application in nonenzymatic glucose biosensors. Biosens Bioelectron 26:3500–3504

    Article  Google Scholar 

  21. Liu Y, Teng H, Hou HQ, You TY (2009) Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode. Biosens Bioelectron 24:3329–3334

    Article  Google Scholar 

  22. Virji S, Huang J, Kaner RB, Weiller BH (2004) Polyaniline nanofiber gas sensors: examination of response mechanisms. Nano Lett 4:491–496

    Article  Google Scholar 

  23. Umar A, Rahman MM, Kim SH, Hahn Y-B (2008) Zinc oxide nanonail based chemical sensor for hydrazine detection. Chem Commun 2:166–168

    Article  Google Scholar 

  24. Liu J, Li Y, Jiang J, Huang X (2010) C@ZnO nanorod array-based hydrazine electrochemical sensor with improved sensitivity and stability. Dalton Trans 39:8693–8697

    Article  Google Scholar 

  25. Liu Y, Chen SS, Wang AJ, Feng JJ, Xu XL, Weng XX (2016) An ultra-sensitive electrochemical sensor for hydrazine based on AuPd nanorod alloy nanochains. Electrochim Acta 195:68–76

    Article  Google Scholar 

  26. Ensafi AA, Mirmomtaz E (2005) Electrocatalytic oxidation of hydrazine with pyrogallol red as a mediator on glassy carbon electrode. J Electroanal Chem 583:176–183

    Article  Google Scholar 

  27. Wang Y, Wan Y, Zhang D (2010) Reduced graphene sheets modified glassy carbon electrode for electrocatalytic oxidation of hydrazine in alkaline media. Electrochem Commun 12:187–190

    Article  Google Scholar 

  28. Virji S, Kaner RB, Weiller BH (2005) Hydrazine detection by polyaniline using fluorinated alcohol additives. Chem Mater 17:1256–1260

    Article  Google Scholar 

  29. Wang G, Zhang C, He X, Li Z, Zhang X, Wang L, Fang B (2010) Detection of hydrazine based on Nano-Au deposited on porous-TiO2 film. Electrochim Acta 55:7204–7210

    Article  Google Scholar 

  30. Yang H, Lu B, Guo L, Qi B (2011) Cerium hexacyanoferrate/ordered mesoporous carbon electrode and its application in electrochemical determination of hydrous hydrazine. J Electroanal Chem 650:171–175

    Article  Google Scholar 

  31. Prabakar SJR, Narayanan SS (2008) Amperometric determination of hydrazine using a surface modified nickel hexacyanoferrate graphite electrode fabricated following a new approach. J Electroanal Chem 617:111–120

    Article  Google Scholar 

  32. Smolenkov AD, Shpigun OA (2012) Direct liquid chromatographic determination of hydrazines: a review. Talanta 102:93–100

    Article  Google Scholar 

  33. Nickel U, Castell AZ, Pöppl K, Schneider S (2000) A silver colloid produced by reduction with hydrazine as support for highly sensitive surface-enhanced Raman spectroscopy. Langmuir 16:9087–9091

    Article  Google Scholar 

  34. Fletcher P, Andrew KN, Calokerinos AC, Forbes S, Worsfold PJ (2001) Analytical applications of flow injection with chemiluminescence detection—a review. Luminescence 16:1–23

    Article  Google Scholar 

  35. Krittayavathananon A, Srimuk P, Luanwuthi S, Sawangphruk M (2014) Palladium nanoparticles decorated on reduced graphene oxide rotating disk electrodes toward ultrasensitive hydrazine detection: effects of particle size and hydrodynamic diffusion. Anal Chem 24:12272–12278

    Article  Google Scholar 

  36. Tang Y-Y, Kao C-L, Chen P-Y (2012) Electrochemical detection of hydrazine using a highly sensitive nanoporous gold electrode. Anal Chim Acta 711:32–39

    Article  Google Scholar 

  37. Yan X, Meng F, Cui S, Liu J, Gu J, Zou Z (2011) Effective and rapid electrochemical detection of hydrazine by nanoporous gold. J Electroanal Chem 661:44–48

    Article  Google Scholar 

  38. Dutta S, Ray C, Mallick S, Sarkar S, Roya A, Pal T (2015) Au@Pd core-shell nanoparticles-decorated reduced graphene oxide: a highly sensitive and selective platform for electrochemical detection of hydrazine. RSC Adv 5:51690–51700

    Article  Google Scholar 

  39. Li J, Lin X (2007) Electrocatalytic oxidation of hydrazine and hydroxylamine at gold nanoparticle-polypyrrole nanowire modified glassy carbon electrode. Sens Actuat B Chem 126:527–535

    Article  Google Scholar 

  40. Rahman MM, Asiri AM (2015) Development of selective and sensitive bicarbonate chemical sensor based on wet-chemically prepared CuO–ZnO nanorods. Sens Actuat B Chem 214:82–91

    Article  Google Scholar 

  41. Ahmad R, Tripathy N, Jung D-U-J, Hahn Y-B (2014) Highly sensitive hydrazine chemical sensor based on ZnO nanorods field-effect transistor. Chem Commun 50:1890–1893

    Article  Google Scholar 

  42. Harraz FA, Ismail AA, Al-Sayari SA, Al-Hajry A, Al-Assiri MS (2016) Highly sensitive amperometric hydrazine sensor based on novel a-Fe2O3/crosslinked polyaniline nanocomposite modified glassy carbon electrode. Sens Actuat B Chem 234:573–582

    Article  Google Scholar 

  43. Kim SP, Choi HC (2015) Reusable hydrazine amperometric sensor based on Nafion-coated TiO2-carbon nanotube modified electrode. Sens Actuat B Chem 207:424–429

    Article  Google Scholar 

  44. He Y, Huang W, Liang Y, Yu H (2015) A low-cost and label-free assay for hydrazine using MnO2 nanosheets as colorimetric probes. Sens Actuat B Chem 220:927–931

    Article  Google Scholar 

  45. Liu XH, Zhang J, Wang LW, Yang TL, Guo XZ, Wu SH, Wang SR (2011) 3D hierarchically porous ZnO structures and their functionalization by Aunanoparticles for gas sensors. J Mater Chem 21:349–356

    Article  Google Scholar 

  46. Yang ZY, Zheng XH, Zheng JB (2017) Facile synthesis of three-dimensional porous Au@Pt core-shell nanoflowers supported on graphene oxide for highly sensitive and selective detection of hydrazine. Chem Eng J 327:431–440

    Article  Google Scholar 

  47. Dutta G, Nagarajan S, Lapidus LJ, Lillehoj PB (2017) Enzyme-free electrochemical immunosensor based on methylene blue and the electro-oxidation of hydrazine on Pt nanoparticles. Biosens Bioelectron 92:372–377

    Article  Google Scholar 

  48. Purusothaman Y, Alluri NR, Chandrasekhar A, Kim SJ (2017) Elucidation of the unsymmetrical effect on the piezoelectric and semiconducting properties of Cd-doped 1D-ZnO nanorods. J Mater Chem C 2:415–426

    Article  Google Scholar 

  49. An B, Zhang JZ, Cheng K, Ji PF, Wang C, Lin WB (2017) Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J Am Chem Soc 139:3834–3840

    Article  Google Scholar 

  50. Nguyen DV, Jiang SW, He CY, Lin ZN, Lin NB, Nguyen AT, Kang LF, Han MY, Liu XY (2016) Elevating biomedical performance of ZnO/SiO2@amorphous calcium phosphate-bioinspiration making possible the impossible. Adv Func Mater 26:6921–6929

    Article  Google Scholar 

  51. Han JH, Lee D, Chew CHC, Kim T, Pak JJ (2016) A multi-virus detectable microfluidic electrochemical immunosensor for simultaneous detection of H1N1, H5N1, and H7N9 virus using ZnO nanorods for sensitivity enhancement. Sens Actuat B Chem 228:36–42

    Article  Google Scholar 

  52. Liu XQ, Liu PP, Huo XH, Liu XH, Liu J (2016) Preparation of TiO2 nanosheet-carbon nanotube composite as immobilization platform for both primary and secondary antibodies in electrochemical immunoassay. Anal Chim Acta 946:40–47

    Article  Google Scholar 

  53. Topoglidis E, Cass AE, Gilardi G, Sadeghi S, Beaumont N, Durrant JR (1998) Protein adsorption on nanocrystalline TiO2 films: an immobilization strategy for bioanalytical devices. Anal Chem 70:5111–5113

    Article  Google Scholar 

  54. Zhang Y, Wang CW, Hou HS, Zou GQ, Ji XB, Ji XB (2016) Nitrogen doped/carbon tuning yolk-like TiO2 and its remarkable impact on sodium storage performances. Adv Energy Mater 7:1600173

    Article  Google Scholar 

  55. Xu JW, Xu N, Zhang XM, Xu P, Gao BA, Peng X, Mooni S, Li Y, Fu JJ, Huo KF (2017) Phase separation induced rhizobia-like Ni nanoparticles and TiO2 nanowires composite arrays for enzyme–free glucose sensor. Sens Actuat B 244:38–46

    Article  Google Scholar 

  56. Jang HD, Kim SK, Chang H, Roh KM, Choi JW, Huang J (2012) A glucose biosensor based on TiO2-Graphene composite. Biosens Bioelectron 38:184–188

    Article  Google Scholar 

  57. Grohmann I, Peplinski B, Unger W (1992) New entries in the XPS fingerprint database for the characterization of precipitated Cu–Zn–Al oxide catalysts. Surf Interface Anal 19:591–594

    Article  Google Scholar 

  58. Yan X, Zou C, Gao X, Gao W (2012) ZnO/TiO2 core-brush nanostructure: processing, microstructure and enhanced photocatalytic activity. J Mater Chem 22:5629–5640

    Article  Google Scholar 

  59. Biesinger MC, Lau LWM, Gerson AR (2010) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci 257:887–898

    Article  Google Scholar 

  60. Song YY, Zhang D, Gao W, Xia XH (2005) Nonenzymatic glucose detection by using a three-dimensionally ordered, macroporous platinum template. Chem Eur J 11:2177–2182

    Article  Google Scholar 

  61. Rahman MM, Khan SB, Jamal A, Faisal M, Asiri AM (2012) Fabrication of highly sensitive acetone sensor based on sonochemically prepared as-grown Ag2O nanostructures. Chem Eng J 192:122–128

    Article  Google Scholar 

  62. Fan Z, Wang D, Chang P-C, Tseng WY, Lu JG (2004) ZnO nanowire field-effect transistor and oxygen sensing property. Appl Phys Lett 85:5923–5925

    Article  Google Scholar 

  63. Majumdar S (2009) Synthesis and characterisation of SnO2 films obtained by a wet chemical process. Mater Sci-Pol 27:123–129

    Google Scholar 

  64. Li FH, Wang W, Gao JP, Wang SY (2009) Electrochemical reduction process of Sb(III) on Au electrode investigated by CV and EIS. J Electrochem Soc 156:84–91

    Article  Google Scholar 

  65. Sharp M, Petersson M, Edstrom K (1979) Preliminary determinations of electron transfer kinetics involving ferrocene covalently attached to a platinum surface. J Electroanal Chem 95:123–130

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the projects (Nos. 21371007 and 21675001) from National Natural Science Foundation of China, Anhui Provincial Natural Science Foundation for Distinguished Youth (1408085J03), the Programs for Science and Technology Development of Anhui Province (1501021019, 1604a0902180), and the Program for Innovative Research Team at Anhui Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 11169 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Zhang, X. Zn–ZnO@TiO2 nanocomposite: a direct electrode for nonenzymatic biosensors. J Mater Sci 53, 7138–7149 (2018). https://doi.org/10.1007/s10853-018-2106-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2106-x

Keywords

Navigation