Skip to main content

On hardening silver nanocubes by high-velocity impacts: a fully atomistic molecular dynamics investigation

Abstract

Gradient nanograins (GNG) creation in metals has been a promising approach to obtain ultra-strong materials. Recently, R. Thevamaran et al. (Science 354:312 in 2016) proposed a single-step method based on high-velocity impacts of silver nanocubes (SNC) to produce almost perfect GNG. However, after certain time, these grains spontaneously coalesce, which compromises the induced hardening and other mechanical properties. To better understand these processes, a detailed investigation at the atomic scale of the deformation/hardening mechanisms are needed, which is one of the objectives of the present work. We carried out fully atomistic molecular dynamics (MD) simulations of silver nanocubes at high impact velocity values using realistic structural models. Our MD results suggest that besides the GNG mechanisms, the observed SNC hardening could be also the result of the existence of polycrystalline arrangements formed by HCP domains encapsulated by FCC ones in the smashed SNC. This can be a new way to design ultra-strong materials, even in the absence of GNG domains.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Reid JD (1996) Towards the understanding of material property influence on automotive crash structures. Thin walled Struct 24:285–313

    Article  Google Scholar 

  2. McAllister TW, Ford JC, Ji S, Beckwith JG, Flashman LA, Paulsen K, Greenwald RM (2012) Maximum principal strain and strain rate associated with concussion diagnosis correlates with changes in corpus callosum white matter indices. Ann Biomed Eng 40:127–140

    Article  Google Scholar 

  3. Hazell PJ (2015) Armour: materials, theory, and design, 1st edn. CRC Press, Boca Raton

    Book  Google Scholar 

  4. Uchic MD, Dimiduk DM, Florando JN, Nix WD (2004) Sample dimensions influence strength and crystal plasticity. Science 305:986–989

    Article  Google Scholar 

  5. Greer JR, De Hosson JTM (2011) Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog Mater Sci 56:654–724

    Article  Google Scholar 

  6. Thevamaran R, Lawal O, Yazdi S, Jeon S-J, Lee J-H, Thomas EL (2016) Dynamic creation and evolution of gradient nanostructure in single-crystal metallic microcubes. Science 354:312–316

    Article  Google Scholar 

  7. Fang TH, Li WL, Tao NR, Lu K (2011) Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331:1587–1590

    Article  Google Scholar 

  8. Lu K (2014) Making strong nanomaterials ductile with gradients. Science 345:1455–1456

    Article  Google Scholar 

  9. Wu X, Jiang Chen PL, Yuan F, Zhu YZ (2014) Extraordinary strain hardening by gradient structure. Proc Natl Acad Sci USA 111:7197–7201

    Article  Google Scholar 

  10. Zeng Z, Li X, Xu D, Lu L, Gao H, Zhu T (2016) Gradient plasticity in gradient nano-grained metals. Extrem Mech Lett 8:213–219

    Article  Google Scholar 

  11. Liaqat F, Tahir MN, Huesmann H et al (2015) Ultrastrong composites from dopamine modified-polymer-infiltrated colloidal crystals. Mater Horiz 2:434–441

    Article  Google Scholar 

  12. Hohenwarter A, Völker B, Kapp MW, Li Y, Goto S, Raabe D, Pippan R (2016) Ultra-strong and damage tolerant metallic bulk materials: a lesson from nanostructured pearlitic steel wires. Sci Rep 6:33228

    Article  Google Scholar 

  13. Jeon S-J, Yazdi S, Thevamaran R, Thomas EL (2017) Synthesis of monodisperse single crystalline Ag microcubes via seed-mediated growth. Cryst Growth Des 17:284–289

    Article  Google Scholar 

  14. Daw MS, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29:6443–6453

    Article  Google Scholar 

  15. Daw MS, Foiles SM, Baskes MI (1993) The embedded-atom method: a review of theory and applications. Mater Sci Rep 9:251–310

    Article  Google Scholar 

  16. Plimpton SJ (1995) Fast parallel algorithms for short-range molecular dynamics. Comput Phys 117:1–19

    Article  Google Scholar 

  17. Shackelford JF (2015) Introduction to materials science for engineers, 8th edn. Pearson, London

    Google Scholar 

  18. Ozden S, Autreto PAS, Tiwary CS et al (2014) Unzipping carbon nanotubes at high impact. Nano Lett 14:4131–4137

    Article  Google Scholar 

  19. Machado LD, Ozden S, Tiwary CS, Autreto PAS, Vajtai R, Barrera EV, Galvao DS, Ajayan PM (2016) The structural and dynamical aspects of boron nitride nanotubes under high velocity impacts. Phys Chem Chem Phys 18:14776–14781

    Article  Google Scholar 

  20. Ozden S, Machado LD, Tiwary CS, Autreto PAS, Vajtai R, Barrera EV, Galvao DS, Ajayan PM (2016) Ballistic fracturing of carbon nanotubes. ACS Appl Mater Interfaces 8:24819–24825

    Article  Google Scholar 

  21. Zang A, Stephansson O (2009) Stress field of the earth’s crust, 1st edn. Springer, Houten

    Google Scholar 

  22. Jackson AG (1991) Handbook of crystallography for electron microscopists and others, 1st edn. Springer, New York

    Book  Google Scholar 

  23. Kumara LSR, Sakata O, Kohara S, Yang A, Song C, Kusada K, Kobayashi H, Kitagawa H (2016) Origin of the catalytic activity of face-centered-cubic ruthenium nanoparticles determined from an atomic-scale structure. Phys Chem Chem Phys 18:30622–30628

    Article  Google Scholar 

  24. Mahynski NA, Panagiotopoulos AZ, Meng D, Kumar SK (2014) Stabilizing colloidal crystals by leveraging void distributions. Nat Commun 5:4472

    Article  Google Scholar 

  25. Hou ZY, Dong KJ, Tian ZA, Liu RS, Wang Z, Wang JG (2016) Cooling rate dependence of solidification for liquid aluminium: a large-scale molecular dynamics simulation study. Phys Chem Chem Phys 18:17461–17469

    Article  Google Scholar 

  26. Huang X, Li S, Huang Y et al (2011) Synthesis of hexagonal close-packed gold nanostructures. Nat Commun 2:292

    Article  Google Scholar 

  27. Shimizu H, Kawajiri M, Kume T, Sasaki S, Freiman YA, Tretyak SM (2009) High-pressure fcc-to-hcp phase transition in solid krypton studied by Raman spectroscopy. Phys Rev B 79:132101

    Article  Google Scholar 

  28. Liu Y, Yang H, Tan G, Miyazaki S, Jiang B, Liu Y (2004) Stress-induced FCC ↔ HCP martensitic transformation in CoNi. J Alloys Compd 368:157–163

    Article  Google Scholar 

  29. Li B, Qian G, Oganov AR, Boulfelfel SE, Faller R (2017) Mechanism of the fcc-to-hcp phase transformation in solid Ar. J Chem Phys 146:214502

    Article  Google Scholar 

  30. Grimvall G, Magyari-Köpe B, Ozolis V, Persson KA (2012) Lattice instabilities in metallic elements. Rev Mod Phys 84:945–986

    Article  Google Scholar 

  31. Jona F, Marcus PM (2007) First-principles study of the high-pressure hexagonal-close-packed phase of mercury. J Phys: Condens Matter 19:036103

    Google Scholar 

  32. Hofmeister H, Tan GL (2005) Shape and internal structure of silver nanoparticles embedded in glass. J Mater Res 20:1551–1562

    Article  Google Scholar 

  33. Zhou N, Li D, Yang D (2014) Morphology and composition controlled synthesis of flower-like silver nanostructures. Nanoscale Res Lett 9:302

    Article  Google Scholar 

  34. Jona F, Marcus PM (2004) Metastable phases of silver and gold in hexagonal structure. J Phys: Condens Matter 16:5199–5204

    Google Scholar 

Download references

Acknowledgements

We would like to thank the Brazilian agency FAPESP (Grants 2013/08293-7 and 2016/18499-0) for financial support. This research was also supported by resources supplied by the Center for Scientific Computing (NCC/GridUNESP) of the São Paulo State University (UNESP). Computational support from the Center for Computational Engineering and Sciences at Unicamp is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliezer Fernando Oliveira.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oliveira, E.F., da Silva Autreto, P.A. & Galvão, D.S. On hardening silver nanocubes by high-velocity impacts: a fully atomistic molecular dynamics investigation. J Mater Sci 53, 7486–7492 (2018). https://doi.org/10.1007/s10853-018-2104-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2104-z

Keywords

  • Silver Nanocubes (SNC)
  • Ultra-strong Materials
  • Realistic Structural Model
  • Impact Face
  • Small Velocity Values