Journal of Materials Science

, Volume 53, Issue 10, pp 7486–7492 | Cite as

On hardening silver nanocubes by high-velocity impacts: a fully atomistic molecular dynamics investigation

  • Eliezer Fernando OliveiraEmail author
  • Pedro Alves da Silva Autreto
  • Douglas Soares Galvão


Gradient nanograins (GNG) creation in metals has been a promising approach to obtain ultra-strong materials. Recently, R. Thevamaran et al. (Science 354:312 in 2016) proposed a single-step method based on high-velocity impacts of silver nanocubes (SNC) to produce almost perfect GNG. However, after certain time, these grains spontaneously coalesce, which compromises the induced hardening and other mechanical properties. To better understand these processes, a detailed investigation at the atomic scale of the deformation/hardening mechanisms are needed, which is one of the objectives of the present work. We carried out fully atomistic molecular dynamics (MD) simulations of silver nanocubes at high impact velocity values using realistic structural models. Our MD results suggest that besides the GNG mechanisms, the observed SNC hardening could be also the result of the existence of polycrystalline arrangements formed by HCP domains encapsulated by FCC ones in the smashed SNC. This can be a new way to design ultra-strong materials, even in the absence of GNG domains.



We would like to thank the Brazilian agency FAPESP (Grants 2013/08293-7 and 2016/18499-0) for financial support. This research was also supported by resources supplied by the Center for Scientific Computing (NCC/GridUNESP) of the São Paulo State University (UNESP). Computational support from the Center for Computational Engineering and Sciences at Unicamp is also acknowledged.

Supplementary material

10853_2018_2104_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1769 kb)
10853_2018_2104_MOESM2_ESM.mpg (7.2 mb)
Supplementary material 2 (MPG 7325 kb)
10853_2018_2104_MOESM3_ESM.mpg (13 mb)
Supplementary material 3 (MPG 13279 kb)
10853_2018_2104_MOESM4_ESM.mpg (7.7 mb)
Supplementary material 4 (MPG 7918 kb)


  1. 1.
    Reid JD (1996) Towards the understanding of material property influence on automotive crash structures. Thin walled Struct 24:285–313CrossRefGoogle Scholar
  2. 2.
    McAllister TW, Ford JC, Ji S, Beckwith JG, Flashman LA, Paulsen K, Greenwald RM (2012) Maximum principal strain and strain rate associated with concussion diagnosis correlates with changes in corpus callosum white matter indices. Ann Biomed Eng 40:127–140CrossRefGoogle Scholar
  3. 3.
    Hazell PJ (2015) Armour: materials, theory, and design, 1st edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  4. 4.
    Uchic MD, Dimiduk DM, Florando JN, Nix WD (2004) Sample dimensions influence strength and crystal plasticity. Science 305:986–989CrossRefGoogle Scholar
  5. 5.
    Greer JR, De Hosson JTM (2011) Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog Mater Sci 56:654–724CrossRefGoogle Scholar
  6. 6.
    Thevamaran R, Lawal O, Yazdi S, Jeon S-J, Lee J-H, Thomas EL (2016) Dynamic creation and evolution of gradient nanostructure in single-crystal metallic microcubes. Science 354:312–316CrossRefGoogle Scholar
  7. 7.
    Fang TH, Li WL, Tao NR, Lu K (2011) Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331:1587–1590CrossRefGoogle Scholar
  8. 8.
    Lu K (2014) Making strong nanomaterials ductile with gradients. Science 345:1455–1456CrossRefGoogle Scholar
  9. 9.
    Wu X, Jiang Chen PL, Yuan F, Zhu YZ (2014) Extraordinary strain hardening by gradient structure. Proc Natl Acad Sci USA 111:7197–7201CrossRefGoogle Scholar
  10. 10.
    Zeng Z, Li X, Xu D, Lu L, Gao H, Zhu T (2016) Gradient plasticity in gradient nano-grained metals. Extrem Mech Lett 8:213–219CrossRefGoogle Scholar
  11. 11.
    Liaqat F, Tahir MN, Huesmann H et al (2015) Ultrastrong composites from dopamine modified-polymer-infiltrated colloidal crystals. Mater Horiz 2:434–441CrossRefGoogle Scholar
  12. 12.
    Hohenwarter A, Völker B, Kapp MW, Li Y, Goto S, Raabe D, Pippan R (2016) Ultra-strong and damage tolerant metallic bulk materials: a lesson from nanostructured pearlitic steel wires. Sci Rep 6:33228CrossRefGoogle Scholar
  13. 13.
    Jeon S-J, Yazdi S, Thevamaran R, Thomas EL (2017) Synthesis of monodisperse single crystalline Ag microcubes via seed-mediated growth. Cryst Growth Des 17:284–289CrossRefGoogle Scholar
  14. 14.
    Daw MS, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29:6443–6453CrossRefGoogle Scholar
  15. 15.
    Daw MS, Foiles SM, Baskes MI (1993) The embedded-atom method: a review of theory and applications. Mater Sci Rep 9:251–310CrossRefGoogle Scholar
  16. 16.
    Plimpton SJ (1995) Fast parallel algorithms for short-range molecular dynamics. Comput Phys 117:1–19CrossRefGoogle Scholar
  17. 17.
    Shackelford JF (2015) Introduction to materials science for engineers, 8th edn. Pearson, LondonGoogle Scholar
  18. 18.
    Ozden S, Autreto PAS, Tiwary CS et al (2014) Unzipping carbon nanotubes at high impact. Nano Lett 14:4131–4137CrossRefGoogle Scholar
  19. 19.
    Machado LD, Ozden S, Tiwary CS, Autreto PAS, Vajtai R, Barrera EV, Galvao DS, Ajayan PM (2016) The structural and dynamical aspects of boron nitride nanotubes under high velocity impacts. Phys Chem Chem Phys 18:14776–14781CrossRefGoogle Scholar
  20. 20.
    Ozden S, Machado LD, Tiwary CS, Autreto PAS, Vajtai R, Barrera EV, Galvao DS, Ajayan PM (2016) Ballistic fracturing of carbon nanotubes. ACS Appl Mater Interfaces 8:24819–24825CrossRefGoogle Scholar
  21. 21.
    Zang A, Stephansson O (2009) Stress field of the earth’s crust, 1st edn. Springer, HoutenGoogle Scholar
  22. 22.
    Jackson AG (1991) Handbook of crystallography for electron microscopists and others, 1st edn. Springer, New YorkCrossRefGoogle Scholar
  23. 23.
    Kumara LSR, Sakata O, Kohara S, Yang A, Song C, Kusada K, Kobayashi H, Kitagawa H (2016) Origin of the catalytic activity of face-centered-cubic ruthenium nanoparticles determined from an atomic-scale structure. Phys Chem Chem Phys 18:30622–30628CrossRefGoogle Scholar
  24. 24.
    Mahynski NA, Panagiotopoulos AZ, Meng D, Kumar SK (2014) Stabilizing colloidal crystals by leveraging void distributions. Nat Commun 5:4472CrossRefGoogle Scholar
  25. 25.
    Hou ZY, Dong KJ, Tian ZA, Liu RS, Wang Z, Wang JG (2016) Cooling rate dependence of solidification for liquid aluminium: a large-scale molecular dynamics simulation study. Phys Chem Chem Phys 18:17461–17469CrossRefGoogle Scholar
  26. 26.
    Huang X, Li S, Huang Y et al (2011) Synthesis of hexagonal close-packed gold nanostructures. Nat Commun 2:292CrossRefGoogle Scholar
  27. 27.
    Shimizu H, Kawajiri M, Kume T, Sasaki S, Freiman YA, Tretyak SM (2009) High-pressure fcc-to-hcp phase transition in solid krypton studied by Raman spectroscopy. Phys Rev B 79:132101CrossRefGoogle Scholar
  28. 28.
    Liu Y, Yang H, Tan G, Miyazaki S, Jiang B, Liu Y (2004) Stress-induced FCC ↔ HCP martensitic transformation in CoNi. J Alloys Compd 368:157–163CrossRefGoogle Scholar
  29. 29.
    Li B, Qian G, Oganov AR, Boulfelfel SE, Faller R (2017) Mechanism of the fcc-to-hcp phase transformation in solid Ar. J Chem Phys 146:214502CrossRefGoogle Scholar
  30. 30.
    Grimvall G, Magyari-Köpe B, Ozolis V, Persson KA (2012) Lattice instabilities in metallic elements. Rev Mod Phys 84:945–986CrossRefGoogle Scholar
  31. 31.
    Jona F, Marcus PM (2007) First-principles study of the high-pressure hexagonal-close-packed phase of mercury. J Phys: Condens Matter 19:036103Google Scholar
  32. 32.
    Hofmeister H, Tan GL (2005) Shape and internal structure of silver nanoparticles embedded in glass. J Mater Res 20:1551–1562CrossRefGoogle Scholar
  33. 33.
    Zhou N, Li D, Yang D (2014) Morphology and composition controlled synthesis of flower-like silver nanostructures. Nanoscale Res Lett 9:302CrossRefGoogle Scholar
  34. 34.
    Jona F, Marcus PM (2004) Metastable phases of silver and gold in hexagonal structure. J Phys: Condens Matter 16:5199–5204Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Gleb Wataghin Institute of PhysicsUniversity of Campinas - UNICAMPCampinasBrazil
  2. 2.Center for Computational Engineering and Sciences (CCES)University of Campinas - UNICAMPCampinasBrazil
  3. 3.Center of Natural Human ScienceFederal University of ABC – UFABCSanto AndréBrazil

Personalised recommendations