Skip to main content
Log in

Influence of nitrogen on the growth of vertical graphene nanosheets under plasma

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We have investigated the effect of nitrogen (N2) as a carrier gas on the growth of vertical graphene nanosheets (VGN) by plasma-enhanced chemical vapor deposition. It is demonstrated that addition of nitrogen gas with a hydrocarbon precursor can enhance the nucleation and growth rate of graphitic base layer as well as vertical sheets. Additionally, nitrogen gas can simultaneously act as an etchant as well as a dopant. Variation in the density of vertical sheets is found, and it increased initially thereafter decreased at higher nitrogen concentration. Furthermore, VGN exhibit sheet resistance from 0.89 to 1.89 KΩ/□ and mobility from 8.05 to 20.14 cm2/V-s, depending on the morphology and type of carrier concentration. These results reveal that the surface morphology and electronic properties of VGN can be tuned by incorporation of nitrogen gas during the growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hiramatsu M, Hori M (2010) Carbon nanowalls: synthesis and emerging applications. Springer, New York

    Book  Google Scholar 

  2. Ghosh S, Sahoo G, Polaki SR, Krishna NG, Kamruddin M, Mathews T (2017) Enhanced supercapacitance of activated vertical graphene nanosheets in hybrid electrolyte. J Appl Phys 122:214902. https://doi.org/10.1063/1.5002748

    Article  Google Scholar 

  3. Sivadasan AK, Santanu P, Subrata G, Ramanathaswamy P, Sandip D (2017) Spectroscopically forbidden infra-red emission in Au-vertical graphene hybrid nanostructures. Nanotechnology 28:465703. https://doi.org/10.1088/1361-6528/aa8d90

    Article  Google Scholar 

  4. Vizireanu S, Dinescu G, Nistor LC et al (2013) Stability of carbon nanowalls against chemical attack with acid solutions. Physica E Low Dimens Syst Nanostruct 47:59. https://doi.org/10.1016/j.physe.2012.09.027

    Article  Google Scholar 

  5. Ghosh S, Polaki SR, Ajikumar P, Krishna NG, Kamruddin M (2017) Aging effects on vertical graphene nanosheets and their thermal stability. Indian J Phys. https://doi.org/10.1007/s12648-017-1113-0

    Google Scholar 

  6. Davami K, Jiang Y, Cortes J et al (2016) Tuning the mechanical properties of vertical graphene sheets through atomic layer deposition. Nanotechnology 27:155701. https://doi.org/10.1088/0957-4484/27/15/155701

    Article  Google Scholar 

  7. Ghosh S, Gupta B, Ganesan K et al (2016) MnO2-vertical graphene nanosheets composite electrodes for energy storage devices. Mater Today Proc 3:1686. https://doi.org/10.1016/j.matpr.2016.04.060

    Article  Google Scholar 

  8. Mishra KK, Ghosh S, Thoguluva RR, Amirthapandian S, Kamruddin M (2016) Thermal conductivity and pressure dependent raman studies of vertical graphene nanosheets. J Phys Chem C 120:25092. https://doi.org/10.1021/acs.jpcc.6b08754

    Article  Google Scholar 

  9. Ghosh S, Ganesan K, Polaki SR, Sivadasan AK, Kamruddin M, Tyagi AK (2016) Effect of annealing on the structural properties of vertical graphene nanosheets. Adv Sci Eng Med 8:146. https://doi.org/10.1166/asem.2016.1826

    Article  Google Scholar 

  10. Liao Q, Li N, Jin S, Yang G, Wang C (2015) All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene. ACS Nano 9:5310

    Article  Google Scholar 

  11. Evlashin S, Svyakhovskiy S, Suetin N et al (2014) Optical and IR absorption of multilayer carbon nanowalls. Carbon 70:111. https://doi.org/10.1016/j.carbon.2013.12.079

    Article  Google Scholar 

  12. Cho HJ, Kondo H, Ishikawa K, Sekine M, Hiramatsu M, Hori M (2014) Density control of carbon nanowalls grown by CH4/H2 plasma and their electrical properties. Carbon 68:380. https://doi.org/10.1016/j.carbon.2013.11.014

    Article  Google Scholar 

  13. Ghosh S, Mathews T, Gupta B, Das A, Krishna NG, Kamruddin M (2017) Supercapacitive vertical graphene nanosheets in aqueous electrolytes. Nano Struct Nano Objects 10:42. https://doi.org/10.1016/j.nanoso.2017.03.008

    Article  Google Scholar 

  14. Seo D, Rider A, Kumar S, Randeniya L, Ostrikov K (2013) Vertical graphene gas-and bio-sensors via catalyst-free, reactive plasma reforming of natural honey. Carbon 60:221. https://doi.org/10.1016/j.carbon.2013.04.015

    Article  Google Scholar 

  15. Krivchenko V, Evlashin S, Mironovich K et al (2013) Carbon nanowalls: the next step for physical manifestation of the black body coating. Sci Rep 3:3328. https://doi.org/10.1038/srep03328

    Article  Google Scholar 

  16. Malesevic A, Kemps R, Vanhulsel A, Chowdhury MP, Volodin A, Van Haesendonck C (2008) Field emission from vertically aligned few-layer graphene. J Appl Phys 104:084301. https://doi.org/10.1063/1.2999636

    Article  Google Scholar 

  17. Ray SC, Soin N, Makgato T et al (2014) Graphene supported graphone/graphane bilayer nanostructure material for spintronics. Sci Rep 4:3862. https://doi.org/10.1038/srep03862

    Article  Google Scholar 

  18. Bo Z, Yang Y, Chen J, Yu K, Yan J, Cen K (2013) Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets. Nanoscale 5:5180. https://doi.org/10.1039/C3NR33449J

    Article  Google Scholar 

  19. Ghosh S, Polaki SR, Kumar N, Amirthapandian S, Kamruddin M, Ostrikov K (2017) Process-specific mechanisms of vertically oriented graphene growth in plasmas. Beilstein J Nanotechnol 8:1658. https://doi.org/10.3762/bjnano.8.166

    Article  Google Scholar 

  20. Wu Y, Qiao P, Chong T, Shen Z (2002) Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition. Adv Mater 14:64. https://doi.org/10.1002/1521-4095(20020104)14:1<64::AID-ADMA64>3.0.CO;2-G

  21. Ghosh S, Ganesan K, Polaki SR et al (2014) Evolution and defect analysis of vertical graphene nanosheets. J Raman Spectrosc 45:642. https://doi.org/10.1002/jrs.4530

    Article  Google Scholar 

  22. Shang NG, Papakonstantinou P, McMullan M et al (2008) Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv Funct Mater 18:3506. https://doi.org/10.1002/adfm.200800951

    Article  Google Scholar 

  23. Cheng C, Teii K (2012) Control of the growth regimes of nanodiamond and nanographite in microwave plasmas. IEEE Trans Plasma Sci 40:1783. https://doi.org/10.1109/TPS.2012.2198487

    Article  Google Scholar 

  24. Ghosh S, Ganesan K, Polaki SR et al (2015) Flipping growth orientation of nanographitic structures by plasma enhanced chemical vapor deposition. RSC Adv 5:91922. https://doi.org/10.1039/C5RA20820C

    Article  Google Scholar 

  25. Chuang AT, Robertson J, Boskovic BO, Koziol KK (2007) Three-dimensional carbon nanowall structures. Appl Phys Lett 90:123107. https://doi.org/10.1063/1.2715441

    Article  Google Scholar 

  26. Luais E, Boujtita M, Gohier A et al (2009) Carbon nanowalls as material for electrochemical transducers. Appl Phys Lett 95:014104. https://doi.org/10.1063/1.3170033

    Article  Google Scholar 

  27. Vizireanu S, Nistor L, Haupt M, Katzenmaier V, Oehr C, Dinescu G (2008) Carbon nanowalls growth by radiofrequency plasma-beam-enhanced chemical vapor deposition. Plasma Process Polym 5:263. https://doi.org/10.1002/ppap.200700120

    Article  Google Scholar 

  28. Soin N, Ray SC, Sarma S et al (2017) Tuning the electronic and magnetic properties of nitrogen-functionalized few-layered graphene nanoflakes. J Phys Chem C 121:14073. https://doi.org/10.1021/acs.jpcc.7b01645

    Article  Google Scholar 

  29. Takeuchi W, Ura M, Hiramatsu M, Tokuda Y, Kano H, Hori M (2008) Electrical conduction control of carbon nanowalls. Appl Phys Lett 92:213103. https://doi.org/10.1063/1.2936850

    Article  Google Scholar 

  30. Vandevelde T, Wu T-D, Quaeyhaegens C, Vlekken J, D’Olieslaeger M, Stals L (1999) Correlation between the OES plasma composition and the diamond film properties during microwave PA-CVD with nitrogen addition. Thin Solid Films 340:159. https://doi.org/10.1016/S0040-6090(98)01410-2

    Article  Google Scholar 

  31. Wang E, Guo Z, Ma J et al (2003) Optical emission spectroscopy study of the influence of nitrogen on carbon nanotube growth. Carbon 41:1827. https://doi.org/10.1016/S0008-6223(03)00155-6

    Article  Google Scholar 

  32. Ghosh S, Ganesan K, Polaki S et al (2015) Influence of substrate on nucleation and growth of vertical graphene nanosheets. Appl Surf Sci 349:576. https://doi.org/10.1016/j.apsusc.2015.05.038

    Article  Google Scholar 

  33. Sahoo G, Ghosh S, Polaki SR, Mathews T, Kamruddin M (2017) Scalable transfer of vertical graphene nanosheets for flexible supercapacitor applications. Nanotechnology 28:415702. https://doi.org/10.1088/1361-6528/aa8252

    Article  Google Scholar 

  34. Mandumpal J, Gemming S, Seifert G (2007) Curvature effects of nitrogen on graphitic sheets: structures and energetics. Chem Phys Lett 447:115. https://doi.org/10.1016/j.cplett.2007.09.007

    Article  Google Scholar 

  35. Nanda SS, Kim MJ, Yeom KS, An SSA, Ju H, Yi DK (2016) Raman spectrum of graphene with its versatile future perspectives. TrAC Trends Anal Chem 80:125. https://doi.org/10.1016/j.trac.2016.02.024

    Article  Google Scholar 

  36. Karuppiah G, Ghosh S, Krishna NG, Ilango S, Kamruddin M, Tyagi AK (2016) A comparative study on defect estimation using XPS and Raman spectroscopy in few layer nanographitic structures. Phys Chem Chem Phys 18:22160. https://doi.org/10.1039/C6CP02033J

    Article  Google Scholar 

  37. Yamada Y, Yasuda H, Murota K, Nakamura M, Sodesawa T, Sato S (2013) Analysis of heat-treated graphite oxide by X-ray photoelectron spectroscopy. J Mater Sci 48:8171. https://doi.org/10.1007/s10853-013-7630-0

    Article  Google Scholar 

  38. Zhao J, Shaygan M, Eckert J, Meyyappan M, Rümmeli MH (2014) Growth mechanism for free-standing vertical graphene. Nano Lett 14:3064. https://doi.org/10.1021/nl501039c

    Article  Google Scholar 

  39. Ayala P, Arenal R, Rümmeli M, Rubio A, Pichler T (2010) The doping of carbon nanotubes with nitrogen and their potential applications. Carbon 48:575. https://doi.org/10.1016/j.carbon.2009.10.009

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank S. Dhara for allowing access to the Raman spectroscopic facility, K. Ganesan for room temperature Hall measurement facility and S. Amirthapandian for TEM measurement. We are grateful to T. R. Devidas for careful evaluation of the manuscript. The authors also thank G. Amarendra for his kind support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Subrata Ghosh or S. R. Polaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Polaki, S.R., Krishna, N.G. et al. Influence of nitrogen on the growth of vertical graphene nanosheets under plasma. J Mater Sci 53, 7316–7325 (2018). https://doi.org/10.1007/s10853-018-2080-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2080-3

Keywords

Navigation