Skip to main content
Log in

Magnetization reversal and tunable exchange bias behavior in Mn-substituted NiCr2O4

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Single phase samples of Ni(Cr1−xMn x )2O4 (x = 0–0.50) were synthesized by using sol–gel route. Investigation of structural, magnetic, exchange bias and magnetization reversal properties was carried out in the bulk samples of Ni(Cr1−xMn x )2O4. Rietveld refinement of the X-ray diffraction patterns recorded at room temperature reveals the tetragonal structure for x = 0 sample with I41/amd space group and cubic structure for x ≥ 0.05 samples with \( {\text{Fd}\bar{3}\text{m}} \) space group. Magnetization measurements show that all samples exhibit ferrimagnetic behavior, and the transition temperature (TC) is found to increase from 73 K for x = 0 to 138 K for x = 0.50. Mn substitution induces magnetization reversal behavior especially for 30 at% of Mn in NiCr2O4 system with a magnetic compensation temperature of 45 K. This magnetization reversal is explained in terms of different site occupation of Mn ions and the different temperature dependence of the magnetic moments of different sublattices. Study of exchange bias behavior in x = 0.10 and 0.30 samples reveals that they exhibit negative and tunable positive and negative exchange bias behavior, respectively. The magnitudes of maximum exchange bias field of these samples are found to be 640 and 5306 Oe, respectively. Exchange bias in x = 0.10 sample originates from the anisotropic exchange interaction between the ferrimagnetic and the antiferromagnetic components of magnetic moment. The tunable exchange bias behavior in x = 0.30 sample is explained in terms of change in domination of one sublattice moment over the other as the temperature is varied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Prince E (1961) Structure of nickel chromite. J Appl Phys 32:S68–S69

    Article  Google Scholar 

  2. Ueno G, Sato S, Kino Y (1999) The low-temperature tetragonal phase of NiCr2O4. Acta Cryst Sect C 55:1963–1966

    Article  Google Scholar 

  3. Maignan A, Martin C, Singh K, Simon C, Lebedev OI, Turner S (2012) From spin induced ferroelectricity to dipolar glasses: spinel chromites and mixed delafossites. J Solid State Chem 195:41–49

    Article  Google Scholar 

  4. Klemme S, van Miltenburg JC (2002) Thermodynamic properties of nickel chromite (NiCr2O4) based on adiabatic calorimetry at low temperatures. Phys Chem Miner 29:663–667

    Article  Google Scholar 

  5. Ohgushi K, Okimoto Y, Ogasawara T, Miyasaka S, Tokura Y (2008) Magnetic, optical, and magnetooptical properties of spinel-type ACr2X4 (A=Mn, Fe Co, Cu, Zn, Cd; X=O, S, Se). J Phys Soc Jpn 77:034713

    Article  Google Scholar 

  6. Tomiyasu K, Kagomiya I (2004) Magnetic structure of NiCr2O4 studied by neutron scattering and magnetization measurements. J Phys Soc Jpn 73:2539–2542

    Article  Google Scholar 

  7. Neel L (1948) Magnetic properties of femtes: ferrimagnetism and antiferromagnetism. Ann Phys 3:137–198

    Article  Google Scholar 

  8. Yoshii K (2001) Magnetic properties of perovskite GdCrO3. J Solid State Chem 159:204–208

    Article  Google Scholar 

  9. Adachi H, Ino H (1999) A ferromagnet having no net magnetic moment. Nature 401:148–150

    Article  Google Scholar 

  10. Nogues J, Schuller IK (1999) Exchange bias. J Magn Magn Mater 192:203–232

    Article  Google Scholar 

  11. Kumar A, Yusuf SM (2015) The phenomenon of negative magnetization and its implications. Phys Rep 556:1–34

    Article  Google Scholar 

  12. Meiklejohn WH, Bean CP (1956) New magnetic anisotropy. Phys Rev 102:1413–1414

    Article  Google Scholar 

  13. Stamps RL (2000) Mechanisms for exchange bias. J Phys D Appl Phys 33:R247

    Article  Google Scholar 

  14. Nogues J, Sort J, Langlais V, Skumryev V, Surinach S, Munoz JS, Baro MD (2005) Exchange bias in nanostructures. Phys Rep 422:65–117

    Article  Google Scholar 

  15. Giri S, Patra M, Majumdar S (2011) Exchange bias effect in alloys and compounds. J Phys: Condens Matter 23:073201

    Google Scholar 

  16. Karmakar S, Taran S, Bose E, Chaudhuri BK, Sun CP, Huang CL, Yang HD (2008) Evidence of intrinsic exchange bias and its origin in spin-glass-like disordered L0.5Sr0.5MnO3 manganites (L = Y, Y0.5Sm0.5, and Y0.5La0.5). Phys Rev B 77:144409

    Article  Google Scholar 

  17. Y-k Tang, Sun Y, Z-h Cheng (2006) Exchange bias associated with phase separation in the perovskite cobaltite La1−xSr x CoO3. Phys Rev B 73:174419

    Article  Google Scholar 

  18. Yoshii K (2011) Positive exchange bias from magnetization reversal in La1−xPr x CrO3. Appl Phys Lett 99:142501

    Article  Google Scholar 

  19. Bora T, Saravanan P, Ravi S (2013) Antiferromagnetism and the effect of exchange bias in LaCr1−xFe x O3 (x = 0.40 to 0.60). J Supercond Nov Magn 26:1645–1648

    Article  Google Scholar 

  20. Kulkarni PD, Thamizhavel A, Rakhecha VC, Nigam AK, Paulose PL, Ramakrishnan S, Grover AK (2009) Magnetic compensation phenomenon and the sign reversal in the exchange bias field in a single crystal of Nd0.75Ho0.25Al 2. EPL 86:47003

    Article  Google Scholar 

  21. Padam R, Ravi S, Ramakrishnan S, Grover AK, Pal D (2014) Exchange bias in non-collinear spin-spiral system. J Magn Magn Mater 371:144–148

    Article  Google Scholar 

  22. Barman J, Bora T, Ravi S (2015) Study of exchange bias and training effect in NiCr2O4. J Magn Magn Mater 385:93–98

    Article  Google Scholar 

  23. Ptak M, Maczka M, Gagor A, Pikul A, Macalik L, Hanuza J (2013) Temperature-dependent XRD, IR, magnetic, SEM and TEM studies of Jahn–Teller distorted NiCr2O4 powders. J Solid State Chem 201:270–279

    Article  Google Scholar 

  24. Singh H, Chakraborty T, Srikanth K, Chandra R, Mitra C, Kumar U (2014) Study of exchange bias in NiCr2O4 nanoparticles. Phys B 448:77–79

    Article  Google Scholar 

  25. Alice M, Jana Poltierova V, Petr H, Jiri P, Daniel N (2011) Magnetic properties of TCr2O4 (T=Co, Ni) fine powders and TCr2O4/SiO2 nanocomposites. IOP Conf Ser Mater Sci Eng 18:032022

    Article  Google Scholar 

  26. Zhu CM, Wang LG, Chen L, Bao DLGC, Wang MC, Yuan SL (2016) Structural and magnetic properties of NiCr1.9Mn0.1O4. J Mater Sci 51:9415–9423. https://doi.org/10.1007/s10853-016-0187-y

    Article  Google Scholar 

  27. Zhang HG, Wang Z, Liu EK, Wang WH, Yue M, Wu GH (2015) Site preference and compensation behavior in Co(Cr, Mn)2O4 system. J Appl Phys 117:17B735

    Article  Google Scholar 

  28. Young RA (1996) The Rietveld method International Union of Crystallography. Oxford University, New York

    Google Scholar 

  29. Crottaz O, Kubel F, Schmid H (1997) Jumping crystals of the spinels NiCr2O4 and CuCr2O4. J Mater Chem 7:143–146

    Article  Google Scholar 

  30. Odo EA (2015) Morphology and elemental study of silicon nanoparticles produced using a vibratory disc Mill. Nanosci Nanotechnol 5:57–63

    Google Scholar 

  31. Ishibashi H, Yasumi T (2007) Structural transition of spinel compound at ferrimagnetic transition temperature. J Magn Magn Mater 310:e610–e612

    Article  Google Scholar 

  32. Ren Y, Palstra TTM, Khomskii DI, Pellegrin E, Nugroho AA, Menovsky AA, Sawatzky GA (1998) Temperature-induced magnetization reversal in a YVO3 single crystal. Nature 396:441–444

    Article  Google Scholar 

  33. Mao J, Sui Y, Zhang X, Su Y, Wang X, Liu Z, Wang Y, Zhu R, Wang Y, Liu W, Tang J (2011) Temperature- and magnetic-field-induced magnetization reversal in perovskite YFe0.5Cr0.5O3. Appl Phys Lett 98:192510

    Article  Google Scholar 

  34. Mandal P, Sundaresan A, Rao CNR, Iyo A, Shirage PM, Tanaka Y, Simon C, Pralong V, Lebedev OI, Caignaert V, Raveau B (2010) Temperature-induced magnetization reversal in BiFe0.5Mn0.5O3 synthesized at high pressure. Phys Rev B 82:100416

    Article  Google Scholar 

  35. Huang XH, Ding JF, Zhang GQ, Hou Y, Yao YP, Li XG (2008) Size-dependent exchange bias in La0.25Ca0.75MnO3 nanoparticles. Phys Rev B 78:224408

    Article  Google Scholar 

  36. Yan LQ, Ren W, Shen J, Sun ZH, Wang FW (2009) The exchange biaslike effect in tetrahedral spinels Cu1−xZnxCr2O4 (x = 0.1,0.3). J Appl Phys 105:07A719

    Article  Google Scholar 

  37. Venkatesh S, Ulhas V, Veer Chand R, Ramakrishnan S, Grover AK (2010) Magnetic response in the vicinity of magnetic compensation: a case study in spin ferromagnetic Sm1−xGdxAl2 intermetallic alloys. J Phys: Condens Matter 22:496002

    Google Scholar 

  38. Padam R, Pandya S, Ravi S, Nigam AK, Ramakrishnan S, Grover AK, Pal D (2013) Magnetic compensation effect and phase reversal of exchange bias field across compensation temperature in multiferroic Co(Cr0.95Fe0.05)2O4. Appl Phys Lett 102:112412

    Article  Google Scholar 

  39. Bora T, Ravi S (2013) Sign reversal of magnetization and exchange bias field in LaCr0.85Mn0.15O3. J Appl Phys 114:183902

    Article  Google Scholar 

  40. Mao J, Sui Y, Zhang X, Wang X, Su Y, Liu Z, Wang Y, Zhu R, Wang Y, Liu W, Liu X (2011) Tunable exchange bias effects in perovskite. Solid State Commun 151:1982–1985

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge CIF, IIT Guwahati for FESEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ravi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barman, J., Ravi, S. Magnetization reversal and tunable exchange bias behavior in Mn-substituted NiCr2O4. J Mater Sci 53, 7187–7198 (2018). https://doi.org/10.1007/s10853-018-2073-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2073-2

Keywords

Navigation