Skip to main content

Advertisement

Log in

Properties of colored oxide films formed electrochemically on titanium in green electrolytes under ultrasonic stirring

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Titanium anodization was successfully carried out in green electrolytes such as acetic acid and sodium bicarbonate solutions, yielding uniformly colored oxide films as passive coatings. Oxide formation was carried out galvanostatically at 9.7 mA cm−2 up to various cell potential values (in the 20–140 V range), in ultrasonic-stirred electrolyte at room temperature. The anodization rate values varied in the range of 1.8–2.0 nm V−1 for sodium bicarbonate solutions and 2.3–2.7 nm V−1 for acetic acid solutions. Micro-Raman spectroscopy allowed the identification of the anatase crystalline phase in the oxides grown up to the highest potentials; under these conditions, the micrographs obtained by scanning electron microscopy revealed oxides with rough and porous surfaces. A variety of colors were obtained for the titanium oxide films (yellow, blue, brown, purple, pink, and green, and different tones of each of them), depending on the final formation potential and the electrolyte nature and concentration; chromatic coordinates measurements exactly defined the color of the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. World Health Statistics (2014) World Health Organization, Switzerland

  2. Kumar A, Srivastana A, Jain E (2009) Biomaterial applications. In: Basu B, Katti D, Kumar A (eds) Advanced biomaterials: fundamentals, processing, and applications. Wiley, New Jersey, pp 535–550

    Google Scholar 

  3. Chaturvedi TP (2009) An overview of the corrosion aspect of dental implants (titanium and its alloys). Indian J Den Res 1:91–98

    Article  Google Scholar 

  4. Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants: a review. Prog Mater Sci 54:397–425

    Article  Google Scholar 

  5. Lausmaa J, Kasemo B (1990) Surface spectroscopic characterization of titanium implant materials. Appl Surf Sci 44:133–146

    Article  Google Scholar 

  6. Kazęk-Kesik A, Krok-Borkowick M, Dercz G, Donesz-Sikorska A, Pamuła E, Simka W (2016) Multilayer coatings formed on titanium alloy surfaces by plasma electrolytic oxidation-electrophoretic deposition methods. Electrochim Acta 204:294–306

    Article  Google Scholar 

  7. Chang C, Huang X, Liu Y, Bai L, Yang X, Hang R, Tang B, Chu PK (2015) High-current anodization: a novel strategy to functionalize titanium-based biomaterials. Electrochim Acta 173:345–353

    Article  Google Scholar 

  8. Liu X, Chu PK, Ding C (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical application. Mater Sci Eng, R 47:49–121

    Article  Google Scholar 

  9. Holmberg RJ, Beauchemin D, Jerkiewicz G (2014) Characteristics of colored passive layers on titanium: morphology, optical properties, and corrosion resistance. ACS Appl Mater Interfaces 6(23):21576–21584

    Article  Google Scholar 

  10. Diamanti MV, Curto BD, Pedeferri M (2008) Interference colors of thin oxide layers on titanium. Color Res Appl 33:221–228

    Article  Google Scholar 

  11. Diamanti MV, Del Curto B, Masconale V, Passaro C, Pedeferri MP (2012) Anodic coloring of titanium and its alloy for jewels production. Color Res Appl 37(5):384–390

    Article  Google Scholar 

  12. Diamanti MV, Del Curto B, Pedeferri M (2011) Anodic oxidation of titanium: from technical aspects to biomedical applications. J Appl Biomater Biomech 9(1):55–69

    Google Scholar 

  13. Bartlett L (2006) An unusual phenomenon observed when anodising CP titanium to produce coloured surfaces for jewellery and other decorative uses. Opt Laser Technol 38(4–6):440–444

    Article  Google Scholar 

  14. Bartlett L (2009) Variability in coloured titanium surfaces for jewellery. Ph.D. Thesis, University of the Arts London, London

  15. Diamanti MV, Aliverti S, Pedeferri MP (2013) Decoupling the dual source of colour alteration of architectural titanium: soiling or oxidation? Corros Sci 72:125–132

    Article  Google Scholar 

  16. Park KH, Heo SJ, Koak JY, Kim SK, Lee JB, Kim SH, Lim YJ (2007) Osseointegration of anodized titanium implants under different current voltages: a rabbit study. J Oral Rehabil 34:517–527

    Article  Google Scholar 

  17. Singh A, Singh BP, Wani MR, Kumar D, Singh JK, Singh V (2013) Effect of anodization on corrosion behaviour and biocompatibility of Cp-titanium in simulated body fluid. Bull Mater Sci 36:931–937

    Article  Google Scholar 

  18. Diamanti MV, Pozzi P, Randone F, Del Curto B, Pedeferri M (2016) Robust anodic colouring of titanium: effect of electrolyte and colour durability. Mater Des 90:1085–1091

    Article  Google Scholar 

  19. Ross AP, Webster TJ (2013) Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions. Int J Nanomed 8:109–117

    Google Scholar 

  20. Kelly EJ (1982) Electrochemical behaviour of titanium. In: O’Bockris J, Conway BE, White RE (eds) Modern aspects of electrochemistry, vol 14. Plenum Press, New York, pp 332–336

    Google Scholar 

  21. Oliveira NTC, Biaggio SR, Nascente PAP, Piazza S, Sunseri C, Di Quarto F (2006) The effect of thickness on the composition of passive films on a Ti–50Zr at% alloy. Electrochim Acta 51:3506–3515

    Article  Google Scholar 

  22. Oliveira NTC, Ferreira EA, Duarte LT, Biaggio SR, Rocha-Filho RC, Bocchi N (2006) Corrosion resistence of anodic oxide on the Ti–50Zr and Ti–13Nb–13Zr alloys. Electrochim Acta 51:2068–2075

    Article  Google Scholar 

  23. Diamanti MV, Curto BD, Masconale V, Passaro C, Pedeferri MP (2012) Anodic coloring of titanium and its alloy for jewels production. Color Res Appl 37:384–390

    Article  Google Scholar 

  24. Bayram C, Demirbilek M, Yalçin E, Bozkurt M, Doğan M, Denkbaş EB (2014) Osteoblast response on co-modified titanium surfaces via anodization and electrospinning. Appl Surf Sci 288:143–148

    Article  Google Scholar 

  25. Marino CEB, Oliveira EM, Rocha-filho RC, Biaggio SR (2001) On the stability of thin-anodic-oxide films of titanium in acid phosphoric media. Corros Sci 43:1465–1476

    Article  Google Scholar 

  26. Ohtsuka T, Masuda M, Sato N (1985) Ellipsometric study of anodic oxide films on titanium in hydrochloric acid, sulfuric acid, and phosphate solution. J Electrochem Soc 132:787–792

    Article  Google Scholar 

  27. Sul YT, Johansson CB, Jeong Y, Albrektsson T (2001) The electrochemical oxide growth behavior on titanium in acid and alkaline electrolytes. Med Eng Phys 23:329–346

    Article  Google Scholar 

  28. Di Quarto F, Doblhofer K, Gerischer H (1978) Instability of anodically formed TiO2 layers. Electrochim Acta 23:195–201

    Article  Google Scholar 

  29. Proost J, Vanhumbeeck JF, Qv Overmeere (2009) Instability of anodically formed TiO2 (revisited). Electrochim Acta 55:350–357

    Article  Google Scholar 

  30. Sato N (1971) A theory for breakdown of anodic films on metals. Electrochim Acta 16:1683–1692

    Article  Google Scholar 

  31. Zhang R, Jiang K, Zhu Y, Qi H, Ding G (2011) Ultrasound-assisted anodization of aluminum in oxalic acid. Appl Surf Sci 258:586–589

    Article  Google Scholar 

  32. Enomoto N, Kurakazu M, Inada M, Kamada K, Hoho J, Lee W (2009) Effect of ultrasonication on anodic oxidation of titanium. J Ceram Soc Jpn 117:369–372

    Article  Google Scholar 

  33. Suslick KS (1990) Sonochemistry. Science 247:1439–1445

    Article  Google Scholar 

  34. Sul Y-T, Johansson CB, Petronis S, Krozer A, Jeong Y, Wennerberg A, Albrektsson T (2002) Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials 23:491–501

    Article  Google Scholar 

  35. Duarte LT, Bolfarini C, Biaggio SR, Rocha-Filho RC, Nascente PA (2014) Growth of aluminum-free porous oxide layers on titanium and its alloys Ti–6Al–4 V and Ti–6Al–7Nb by micro-arc oxidation. Mater Sci Eng, C 41:343–348

    Article  Google Scholar 

  36. Peláez-Abellán E, Duarte LT, Biaggio SR, Rocha-Filho RC, Bocchi N (2012) Modification of the titanium oxide morphology and composition by a combined chemical-electrochemical treatment on cp Ti. Mater Res 15(1):159–165

    Article  Google Scholar 

  37. Ohtsuka T, Guo J, Sato N (1986) Raman spectra of the anodic oxide film on titanium in acidic sulfate and neutral phosphate solutions. J Electrochem Soc 133:2473–2476

    Article  Google Scholar 

  38. Sanchez AG, Scheiner W, Duffó G, Ceré S (2012) Surface modification of titanium by anodic oxidation in phosphoric acid at low potentials. Part 1. Structure, electronic properties and thickness of the anodic films. Surf Interface Anal 45:1037–1046

    Article  Google Scholar 

  39. Tian F, Zhang Y, Zhang J, Pan C (2012) Raman spectroscopy: a new approach to measure the percentage of anatase TiO2 exposed (001) facets. J Phys Chem C 116(13):7515–7519

    Article  Google Scholar 

  40. Delplancke J-L, Degrez M, Fontana A, Winand R (1982) Self-colour anodizing of titanium. Surf Technol 16:153–162

    Article  Google Scholar 

  41. Yang C, Chen F, Chen S (2006) Anodization of the dental arch wires. Mater Chem Phys 100:268–274

    Article  Google Scholar 

  42. Wu H-J, Huang L-L, Chen S-W, Liou EJ-W, Lee Y-T (2009) Surface characterization of anodized dental archwires and miniscrews. J Taiwan Inst Chem E 40:563–572

    Article  Google Scholar 

  43. Van Gils S, Mast P, Stijns E, Terryn H (2004) Colour properties of barrier anodic oxide films on aluminium and titanium studied with total reflectance and spectroscopic ellipsometry. Surf Coat Technol 185:303–310

    Article  Google Scholar 

Download references

Acknowledgements

Financial support and scholarships from the Brazilian funding agencies CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia R. Biaggio.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest that could influence the submitted work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaniolo, K.M., Biaggio, S.R., Bocchi, N. et al. Properties of colored oxide films formed electrochemically on titanium in green electrolytes under ultrasonic stirring. J Mater Sci 53, 7294–7304 (2018). https://doi.org/10.1007/s10853-018-2070-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2070-5

Keywords

Navigation