Skip to main content
Log in

Ultraviolet-assisted cold poling of Pb(Zr0.52Ti0.48)O3 films

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper discusses the advantages of a room-temperature poling procedure during exposure to ultraviolet light for Pb(Zr0.52Ti0.48)O3 (PZT) films. The results of these experiments include the following: for 1.7-µm-thick chemical solution-deposited PZT films, the saturation photocurrent density after a 10 min white light exposure (190–1900 nm) (no DC bias field applied) increased up to 0.066 µA/cm2 with increasing Cr thickness of top electrode in Cr/Pt bilayer electrodes. Furthermore, the d33,f piezoelectric coefficients for UV-poled samples were 40 and 20% higher than those achieved from field-only poling at either room temperature or 150 °C. Additionally, the development of an internal bias field and pinching were investigated in major and minor polarization–electric field loops. It was found that ultraviolet illumination during the poling process produced photoinduced charge carriers that became trapped by local defects and/or grain boundaries in the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Izymskaya N, Alivov YI, Cho SJ, Morkoc H, Lee H, Kang YS (2007) Processing, structure, properties, and applications of PZT thin films. Crit Rev Solid State Mater Sci 32:111–202

    Article  Google Scholar 

  2. Muralt P, Polcawich RG, Trolier-McKinstry S (2009) Piezoelectric thin films for sensors, actuators, and energy harvesting. MRS Bull 34:658–664

    Article  Google Scholar 

  3. Trolier-McKinstry S, Muralt P (2004) Thin film piezoelectrics for MEMS. J Electroceram 12:7–17

    Article  Google Scholar 

  4. Wolf RA, Trolier-McKinstry S (2004) Temperature dependence of the piezoelectric response in lead zirconate titanate films. J Appl Phys 95:1397–1406

    Article  Google Scholar 

  5. Zhu W, Fujii I, Ren W, Trolier-McKinstry S (2012) Domain wall motion in A and B site donor-doped Pb(Zr0.52Ti0.48)O3. J Am Ceram Soc 95:2906–2913

    Article  Google Scholar 

  6. Yeo HG, Trolier-McKinstry S (2014) 001 oriented piezoelectric thin film prepared by chemical solution deposition on Ni foils. J Appl Phys 116:014105

    Article  Google Scholar 

  7. Park KI, Son JH, Hwang G-T, Jeong CK, Ryu J, Koo M, Choi I, Lee SH, Byun M, Wang ZL, Lee KJ (2014) Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv Mater 26:2514–2520

    Article  Google Scholar 

  8. Trolier-McKinstry S (2008) Chapter 3: crystal chemistry of piezoelectric materials. In: Safari A, Akdoğan EK (eds) Piezoelectric and acoustic materials for transducer applications. Springer, New York

    Google Scholar 

  9. Kanno I, Kotera H, Wasa K (2003) Measurement of transverse piezoelectric properties of PZT thin films. Sens Actuators A 107:68–74

    Article  Google Scholar 

  10. Takahashi S (1982) Effect of impurity doping in lead zirconate-titanate ceramics. Ferroelectrics 41:143–156

    Article  Google Scholar 

  11. Polcawich RG, Trolier-McKinstry S (2000) Piezoelectric and dielectric reliability of lead zirconate titanate thin films. J Mater Res 15:2505–2513

    Article  Google Scholar 

  12. Polcawich RG (2007) Design, fabrication, test, and evaluation of RF MEMS series switches using lead zirconate titanate (PZT) thin film actuators. PhD thesis, The Pennsylvania State University

  13. Sekkat Z, Dumont M (1992) Photoassisted poling of Azo Dye doped polymeric films at room temperature. Appl Phys B 54:486–489

    Article  Google Scholar 

  14. Jiang XL, Li L, Kumar J, Tripathy SK (1996) Photoassisted poling induced second harmonic generation with in-plane anisotropy in azobenzene containing polymer films. Appl Phys Lett 69:3629–3631

    Article  Google Scholar 

  15. Dimos D, Warren WL, Sinclair MB, Tuttle BA, Schwartz RW (1994) Photoinduced hysteresis changes and optical storage in (Pb, La)(Zr, Ti)O3 thin films and ceramics. J Appl Phys 76:4305–4315

    Article  Google Scholar 

  16. Warren WL, Dimos D, Pike GE, Tuttle BA, Raymond MV, Ramesh R, Evans JT (1995) Voltage shifts and imprint in ferroelectric capacitors. Appl Phys Lett 67:866–868

    Article  Google Scholar 

  17. Warren WL, Al-Shareef HN, Dimos D, Tuttle BA, Pike GE (1996) Driving force behind voltage shifts in ferroelectric materials. Appl Phys Lett 68:1681–1683

    Article  Google Scholar 

  18. Pike GE, Warren WL, Dimos D, Tuttle BA, Ramesh R, Lee J, Keramidas VG, Evans JT (1995) Voltage offsets in (Pb, La)(Zr, Ti)O3 thin films. Appl Phys Lett 66:484–486

    Article  Google Scholar 

  19. Carl K, Hardtl KH (1977) Electrical after-effects in Pb(Ti, Zr)O3 ceramics. Ferroelectrics 17:473–486

    Article  Google Scholar 

  20. Basu SR, Martin LW, Chu YH, Gajek M, Ramesh R, Rai RC, Xu X, Musfeldt JL (2008) Photoconductivity in BiFeO3 thin films. Appl Phys Lett 92:091905

    Article  Google Scholar 

  21. Choi T, Lee S, Choi YJ, Kiryukhin V, Cheong SW (2009) Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324:63–66

    Article  Google Scholar 

  22. Yang SY, Seidel J, Byrnes SJ, Shafer P, Yang CH, Rossell MD, Yu P, Chu YH, Scott JF, Ager JW, Martin LW, Ramesh R (2009) Above-bandgap voltages from ferroelectric photovoltaic devices. Nat Nanotechnol 5:143–147

    Article  Google Scholar 

  23. Grinberg I, West DV, Torres M, Gou G, Stein DM, Wu L, Chen G, Gallo EM, Akbashev AR, Davies PK, Spanier JE, Rappe AM (2013) Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503:509–517

    Article  Google Scholar 

  24. Qin M, Yao K, Liang YC (2008) High efficient photovoltaics in nanoscaled ferroelectric thin films. Appl Phys Lett 93:122904

    Article  Google Scholar 

  25. Auciello O, Waser R (1995) Science and technology of electroceramic thin films. Nato Sci Ser E 284:58–60

    Google Scholar 

  26. Kholkin AL, Setter N (1997) Photoinduced poling of lead titanate zirconate thin films. Appl Phys Lett 71:2854–2856

    Article  Google Scholar 

  27. Shaw TM, Trolier-McKinstry S, McIntyre PC (2000) The properties of ferroelectric films at small dimensions. Annu Rev Mater Res 30:263–298

    Google Scholar 

  28. Ihlefeld JF, Hatid DT, Keech R, Jones JL, Maria J-P, Trolier-McKinstry S (2016) Scaling effects in perovskite ferroelectrics: fundamental limits and process-structure-property relations. J Am Ceram Soc 99:2537–2557

    Article  Google Scholar 

  29. Polyanskiy MN, Refractive index database. https://refractiveindex.info

  30. Johnson PB, Christy RW (1974) Optical constants of transition metals: Ti, V, Cr, Mn, Fe Co, Ni, and Pd. Phys Rev B 9:5056–5070

    Article  Google Scholar 

  31. Werner WSM, Glantschnig K, Ambrosch-Draxl C (2009) Optical constants and inelastic electron-scattering data for 17 elemental metals. J Phys Chem Ref Data 38:1013–1092

    Article  Google Scholar 

  32. Kholkin AL, Taylor DV, Setter N (1998) Poling effect on the piezoelectric properties of lead zirconate titanate thin films. In: Proceedings of the 11th IEEE international symposium on applications of ferroelectrics, pp 69–72

  33. Baniecki JD, Cross JS, Tsukada M (2002) H2O vapor-induced leakage degradation of Pb(Zr, Ti)O3 thin-film capacitors with Pt and IrO2 electrodes. Appl Phys Lett 81:3837–3839

    Article  Google Scholar 

  34. Wang J, Salm C, Houwman E, Nguyen M, Schmitz J (2016) Humidity and polarity influence on MIM PZT capacitor degradation and breakdown. In: IEEE international integrated reliability wrokshop, 65–68

  35. Shafiei A, Alfantazi A (2014) Experimental investigation of the effects of water electrolysis parameters on the amount of hydrogen damage in PZT. J Mater Sci 49:519–526. https://doi.org/10.1007/s10853-013-7729-3

    Article  Google Scholar 

  36. Kohli M, Muralt P, Setter N (1998) Removal of 90o domain pinning in (100) Pb(Zr0.15Ti0.85)O3 thin films by pulsed operation. Appl Phys Lett 72:3217–3219

    Article  Google Scholar 

  37. Akedo J, Lebedev M (2000) Piezoelectric properties and poling effect of Pb(Zr, Ti)O3 thick films prepared for microactuators by aerosol deposition. Appl Phys Lett 77:1710–1712

    Article  Google Scholar 

  38. Kounga AB, Granzow T, Aulbach E, Hinterstein M, Rödel J (2008) High-temperature poling of ferroelectrics. J Appl Phys 104:024116

    Article  Google Scholar 

  39. Nguyen MD, Huowman E, Dekkers M, Vu HN, Rijnders G (2014) A fast room-temperature poling process of piezoelectric Pb(Zr0.45Ti0.55)O3 thin films. Sci Adv Mater 6:1–9

    Article  Google Scholar 

  40. Watanabe S, Fujiu T, Fujii T (1995) Effect of poling on piezoelectric properties of lead zirconate titanate thin films formed by sputtering. Appl Phys Lett 66:1481–1483

    Article  Google Scholar 

  41. Kobayashi T, Suzuki Y, Makimoto N, Funakubo H, Maeda R (2014) Activation of piezoelectric property of PZT thin films by pulse poling. J Phys 557:012130

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support from Aninitech Corp. Ltd. The authors are grateful to Adarsh Rajashekhar, Bill Genet, and Rob McAllister for their assistance and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanlin Zhu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Luo, W., Akkopru-Akgun, B. et al. Ultraviolet-assisted cold poling of Pb(Zr0.52Ti0.48)O3 films. J Mater Sci 53, 7180–7186 (2018). https://doi.org/10.1007/s10853-018-2069-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2069-y

Keywords

Navigation