Skip to main content
Log in

Scalable production of few-layer molybdenum disulfide nanosheets by supercritical carbon dioxide

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Molybdenum disulfide (MoS2) has attracted a great deal of attention to its unique properties in recent years. In this work, a scalable and green method was developed for the production of high-quality MoS2 nanosheets using shear-assisted supercritical CO2 exfoliation. Our experiments indicate that high temperature, pressure, and shearing speed are favorable to the exfoliation of MoS2. It is found that over 95% of the exfoliated MoS2 nanosheets are less than 10 layers, among which about 50% are 1–4 layers. Raman spectra and XRD patterns reveal that few-layer MoS2 nanosheets with high planar crystal structure are successfully prepared. Moreover, the produced MoS2 has a better stability in N-methyl-pyrrolidone (NMP) than the bulk MoS2. The concentration of the exfoliated MoS2 in NMP after sedimentation for 7 days is as high as 0.97 mg/ml.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  Google Scholar 

  2. Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200

    Article  Google Scholar 

  3. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712

    Article  Google Scholar 

  4. Late DJ, Liu B, Matte HR, Dravid VP, Rao C (2012) Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 6:5635–5641

    Article  Google Scholar 

  5. Lembke D, Bertolazzi S, Kis A (2015) Single-layer MoS2 electronics. Acc Chem Res 48:100–110

    Article  Google Scholar 

  6. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150

    Article  Google Scholar 

  7. Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135:10274–10277

    Article  Google Scholar 

  8. Wang X, Xing W, Feng X, Song L, Hu Y (2017) MoS2/polymer nanocomposites: preparation, properties, and applications. Polym Rev 57:440–466

    Article  Google Scholar 

  9. Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102:10451–10453

    Article  Google Scholar 

  10. Radisavljevic B, Kis A (2013) Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat Mater 12:815–820

    Article  Google Scholar 

  11. Kang K, Xie S, Huang L et al (2015) High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520:656–660

    Article  Google Scholar 

  12. Chen S-M, Lin Y-J (2018) Controlled growth of MoS2 nanopetals on the silicon nanowire array using the chemical vapor deposition method. J Cryst Growth 481:18–22

    Article  Google Scholar 

  13. Nguyen EP, Carey BJ, Daeneke T, Ou JZ, Latham K, Zhuiykov S, Kalantar-zadeh K (2014) Investigation of two-solvent grinding-assisted liquid phase exfoliation of layered MoS2. Chem Mater 27:53–59

    Article  Google Scholar 

  14. Wang D, Wu F, Song Y, Li C, Zhou L (2017) Large-scale production of defect-free MoS2 nanosheets via pyrene-assisted liquid exfoliation. J Alloys Compd 728:1030–1036

    Article  Google Scholar 

  15. Ramakrishna Matte HSS, Gomathi A, Manna AK, Late DJ, Datta R, Pati SK, Rao CNR (2010) MoS2 and WS2 analogues of graphene. Angew Chem 122:4153–4156

    Article  Google Scholar 

  16. Li H, Wu J, Yin Z, Zhang H (2014) Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc Chem Res 47:1067–1075

    Article  Google Scholar 

  17. Lee YH, Zhang XQ, Zhang W et al (2012) Synthesis of large—area MoS2 atomic layers with chemical vapor deposition. Adv Mater 24:2320–2325

    Article  Google Scholar 

  18. Coleman JN, Lotya M, O’Neill A et al (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571

    Article  Google Scholar 

  19. Grayfer ED, Kozlova MN, Fedorov VE (2017) Colloidal 2D nanosheets of MoS2 and other transition metal dichalcogenides through liquid-phase exfoliation. Adv Colloid Interface Sci 245:40–61

    Article  Google Scholar 

  20. Brent JR, Savjani N, O’Brien P (2017) Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets. Prog Mater Sci 89:411–478

    Article  Google Scholar 

  21. Zerda AS, Caskey TC, Lesser AJ (2003) Highly concentrated, intercalated silicate nanocomposites: synthesis and characterization. Macromolecules 36:1603–1608

    Article  Google Scholar 

  22. Rangappa D, Sone K, Wang M et al (2010) Rapid and direct conversion of graphite crystals into high-yielding, good-quality graphene by supercritical fluid exfoliation. Chemistry 16:6488–6494

    Article  Google Scholar 

  23. Zheng X, Xu Q, Li J, Li L, Wei J (2012) High-throughput, direct exfoliation of graphite to graphene via a cooperation of supercritical CO2 and pyrene-polymers. RSC Adv 2:10632–10638

    Article  Google Scholar 

  24. Li L, Zheng X, Wang J, Sun Q, Xu Q (2012) Solvent-exfoliated and functionalized graphene with assistance of supercritical carbon dioxide. ACS Sust Chem Eng 1:144–151

    Article  Google Scholar 

  25. Sathish M, Mitani S, Tomai T, Honma I (2014) Supercritical fluid assisted synthesis of N-doped graphene nanosheets and their capacitance behavior in ionic liquid and aqueous electrolytes. J Mater Chem A 2:4731–4738

    Article  Google Scholar 

  26. Song N, Jia J, Wang W, Gao Y, Zhao Y, Chen Y (2016) Green production of pristine graphene using fluid dynamic force in supercritical CO2. Chem Eng J 298:198–205

    Article  Google Scholar 

  27. Gao H, Zhu K, Hu G, Xue C (2017) Large-scale graphene production by ultrasound-assisted exfoliation of natural graphite in supercritical CO2/H2O medium. Chem Eng J 308:872–879

    Article  Google Scholar 

  28. Rangappa D, Sone K, Wang M et al (2010) Rapid and direct conversion of graphite crystals into high—yielding, good—quality graphene by supercritical fluid exfoliation. Chem-A Eur J 16:6488–6494

    Article  Google Scholar 

  29. Xu S, Xu Q, Wang N, Chen Z, Tian Q, Yang H, Wang K (2015) Reverse-micelle-induced exfoliation of graphite into graphene nanosheets with assistance of supercritical CO2. Chem Mater 27:3262–3272

    Article  Google Scholar 

  30. Wang N, Wei F, Qi Y, Li H, Lu X, Zhao G, Xu Q (2014) Synthesis of strongly fluorescent molybdenum disulfide nanosheets for cell-targeted labeling. ACS Appl Mater Interfaces 6:19888–19894

    Article  Google Scholar 

  31. Wang N, Xu Q, Xu S, Qi Y, Chen M, Li H, Han B (2015) High-efficiency exfoliation of layered materials into 2D nanosheets in switchable CO2/surfactant/H2O system. Sci Rep 5:16764

    Article  Google Scholar 

  32. Thangasamy P, Sathish M (2016) Rapid, one-pot synthesis of luminescent MoS2 nanoscrolls using supercritical fluid processing. J Mater Chem C 4:1165–1169

    Article  Google Scholar 

  33. Thangasamy P, Partheeban T, Sudanthiramoorthy S, Sathish M (2017) Enhanced superhydrophobic performance of BN-MoS2 heterostructure prepared via a rapid, one-pot supercritical fluid processing. Langmuir 33:6159–6166

    Article  Google Scholar 

  34. Qi Y, Wang N, Xu Q, Li H, Zhou P, Lu X, Zhao G (2015) A green route to fabricate MoS2 nanosheets in water-ethanol-CO2. Chem Commun (Camb) 51:6726–6729

    Article  Google Scholar 

  35. Wang Y, Zhou C, Wang W, Zhao Y (2013) Preparation of two dimensional atomic crystals BN, WS2, and MoS2 by supercritical CO2 assisted with ultrasound. Ind Eng Chem Res 52:4379–4382

    Article  Google Scholar 

  36. Grossiord N, Loos J, Meuldijk J, Regev O, Miltner HE, Van Mele B, Koning CE (2007) Conductive carbon-nanotube/polymer composites: spectroscopic monitoring of the exfoliation process in water. Compos Sci Technol 67:778–782

    Article  Google Scholar 

  37. Sun Y, Tang B, Huang W et al (2016) Preparation of graphene modified epoxy resin with high thermal conductivity by optimizing the morphology of filler. Appl Therm Eng 103:892–900

    Article  Google Scholar 

  38. Xiao J, Choi D, Cosimbescu L, Koech P, Liu J, Lemmon JP (2010) Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chem Mater 22:4522–4524

    Article  Google Scholar 

  39. Li L, Xu J, Li G et al (2016) Preparation of graphene nanosheets by shear-assisted supercritical CO2 exfoliation. Chem Eng J 284:78–84

    Article  Google Scholar 

  40. Liu L, Shen Z, Yi M, Zhang X, Ma S (2014) A green, rapid and size-controlled production of high-quality graphene sheets by hydrodynamic forces. RSC Adv 4:36464–36470

    Article  Google Scholar 

  41. Li H, Zhang Q, Yap CCR, Tay BK, Edwin THT, Olivier A, Baillargeat D (2012) From bulk to monolayer MoS2: evolution of raman scattering. Adv Funct Mater 22:1385–1390

    Article  Google Scholar 

  42. Qi Y, Xu Q, Wang Y, Yan B, Ren Y, Chen Z (2016) CO2-induced phase engineering: protocol for enhanced photoelectrocatalytic performance of 2D MoS2 nanosheets. ACS Nano 10:2903–2909

    Article  Google Scholar 

  43. Joensen P, Frindt R, Morrison SR (1986) Single-layer MoS2. Mater Res Bull 21:457–461

    Article  Google Scholar 

  44. Joensen P, Crozier E, Alberding N, Frindt R (1987) A study of single-layer and restacked MoS2 by X-ray diffraction and X-ray absorption spectroscopy. J Phys C: Solid State Phys 20:4043

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Science Foundation of China University of Petroleum, Beijing (No. 2462016YJRC007), the National Natural Science Foundation of China (Grant Nos. 21776308, 21576289), Science Foundation of China University of Petroleum, Beijing (Grant No. C201603), Science Foundation Research Funds Provided to New Recruitments of China University of Petroleum, Beijing (Grant No. 2462014QZDX01), and Thousand Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfeng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, X., Wu, J., Li, Q. et al. Scalable production of few-layer molybdenum disulfide nanosheets by supercritical carbon dioxide. J Mater Sci 53, 7258–7265 (2018). https://doi.org/10.1007/s10853-018-2053-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2053-6

Keywords

Navigation