Journal of Materials Science

, Volume 53, Issue 9, pp 7083–7093 | Cite as

Improving the crystallization and fire resistance of poly(lactic acid) with nano-ZIF-8@GO

  • Mi Zhang
  • Xiaowei Shi
  • Xiu Dai
  • Changan Huo
  • Jiong Xie
  • Xu Li
  • Xinlong Wang
Polymers
  • 31 Downloads

Abstract

The nano-ZIF-8@GO hybrids were synthesized and blended with poly(lactic acid) (PLA) by solution method. The effect of nano-ZIF-8@GO hybrids on the crystallization was investigated by DSC and POM. The results showed that low addition amount of nano-ZIF-8@GO had a significant influence on the crystallization behavior of PLA. The tensile strength and elongation at break of the PLA/ZIF-8@GO nanocomposites with 0.5 wt% of ZIF-8@GO were increased to 49.63 MPa and 24.10% compared with 35.83 MPa and 17.66% of the pure PLA, respectively. The addition of nano-ZIF-8@GO hybrids also enhanced the flame retardancy of PLA, and the mechanism was proposed.

Notes

Acknowledgements

This work was supported by Science and Technology Support Program (Social Development) of Jiangsu Province of China (BE 2013714) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

References

  1. 1.
    Castroaguirre E, Iñiguezfranco F, Samsudin H, Fang X, Auras R (2016) Poly (lactic acid)—mass production, processing, industrial applications, and end of life. Adv Drug Deliv Rev 107:333–366CrossRefGoogle Scholar
  2. 2.
    Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly (lactic acid) crystallization. Prog Polym Sci 37(12):1657–1677CrossRefGoogle Scholar
  3. 3.
    Bouzouita A, Notta-Cuvier D, Raquez JM, Lauro F, Dubois P (2017) Poly(lactic acid)-based materials for automotive applications. Adv Polym Sci.  https://doi.org/10.1007/12_2017_10 Google Scholar
  4. 4.
    Rasal RM, Janorkar AV, Hirt DE (2010) Poly (lactic acid) modifications. Prog Polym Sci 35(3):338–356CrossRefGoogle Scholar
  5. 5.
    Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois P (2009) New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng R 63(3):100–125CrossRefGoogle Scholar
  6. 6.
    Higginbotham AL, Lomeda JR, Morgan AB, Tour JM (2009) Graphite oxide flame-retardant polymer nanocomposites. ACS Appl Mater Interfaces 1(10):2256–2261CrossRefGoogle Scholar
  7. 7.
    Wang HS, Qiu Z (2011) Crystallization behaviors of biodegradable poly(l-lactic acid)/graphene oxide nanocomposites from the amorphous state. Thermochim Acta 526(1):229–236CrossRefGoogle Scholar
  8. 8.
    Zhang CL, Wang TT, Gu XP, Feng LF (2015) Crystallization behavior of functional polypropylene grafted graphene oxide nanocomposite. RSC Adv 5(80):65058–65067CrossRefGoogle Scholar
  9. 9.
    Xu JZ, Chen T, Yang CL, Li ZM, Mao YM, Zeng BQ, Hsiao BS (2010) Isothermal crystallization of poly(l-lactide) induced by graphene nanosheets and carbon nanotubes: a comparative study. Macromolecules 43(11):5000–5008CrossRefGoogle Scholar
  10. 10.
    Kim HW, Yoon JH, Diederichsen KM, Shin JE, Yoo BM, McCloskey BD, Park HB (2017) Exceptionally reinforced polymer nanocomposites via incorporated surface porosity on graphene oxide sheets. Macromol Mater Eng.  https://doi.org/10.1002/mame.201700039 Google Scholar
  11. 11.
    Wang X, Song L, Yang H, Xing W, Lu H, Hu Y (2012) Cobalt oxide/graphene composite for highly efficient CO oxidation and its application in reducing the fire hazards of aliphatic polyesters. J Mater Chem 22(8):3426–3431CrossRefGoogle Scholar
  12. 12.
    Cao Y, Feng J, Wu P (2012) Polypropylene-grafted graphene oxide sheets as multifunctional compatibilizers for polyolefin-based polymer blends. J Mater Chem 22(30):14997–15005CrossRefGoogle Scholar
  13. 13.
    Britt D, Tranchemontagne D, Yaghi OM (2008) Metal-organic frameworks with high capacity and selectivity for harmful gases. Proc Natl Acad of Sci USA 105(33):11623–11627CrossRefGoogle Scholar
  14. 14.
    Li S, Yang K, Tan C, Huang X, Huang W, Zhang H (2016) Preparation and applications of novel composites composed of metal-organic frameworks and two-dimensional materials. Chem Commun 47(13):1555–1562CrossRefGoogle Scholar
  15. 15.
    Elangovan D, Yuzay IE, Selke SEM, Auras R (2015) Poly (l-lactic acid) metal organic framework composites: optical, thermal and mechanical properties. Polym Int 61(1):30–37CrossRefGoogle Scholar
  16. 16.
    Petit C, Bandosz TJ (2010) MOF–graphite oxide composites: combining the uniqueness of graphene layers and metal–organic frameworks. Adv Mater 21(46):4753–4757CrossRefGoogle Scholar
  17. 17.
    Petit C, Mendoza B, Bandosz TJ (2010) Hydrogen sulfide adsorption on MOFs and MOF/graphite oxide composites. ChemPhysChem 11(17):3678–3684CrossRefGoogle Scholar
  18. 18.
    Ebrahim AM, Bandosz TJ (2013) Ce (III) doped Zr-based MOFs as excellent NO2 adsorbents at ambient conditions. Acs Appl Mater Interfaces 5(21):10565–10573CrossRefGoogle Scholar
  19. 19.
    Dasari A, Yu ZZ, Cai GP, Mai YW (2013) Recent developments in the fire retardancy of polymeric materials. Prog Polym Sci 38(9):1357–1387CrossRefGoogle Scholar
  20. 20.
    Poh HL, Šaněk F, Ambrosi A, Zhao G, Sofer Z, Pumera M (2012) Pumera, Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale 4(11):3515–3522CrossRefGoogle Scholar
  21. 21.
    Chen J, Yao B, Li C, Shi G (2013) An improved hummers method for eco-friendly synthesis of graphene oxide. Carbon 64(11):225–229CrossRefGoogle Scholar
  22. 22.
    Holzwarth U, Gibson N (2011) The Scherrer equation versus the ‘Debye–Scherrer equation’. Nat Nanotechnol 6(9):534CrossRefGoogle Scholar
  23. 23.
    Wu D, Cheng Y, Feng S, Yao Z, Zhang M (2013) Crystallization behavior of polylactide/graphene composites. Ind Eng Chem Res 52(20):6731–6739CrossRefGoogle Scholar
  24. 24.
    Nam JY, Ray SS, Okamoto M (2003) Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite. Macromolecules 36(19):7126–7131CrossRefGoogle Scholar
  25. 25.
    Kumar R, Jayaramulu K, Maji TK, Rao CN (2013) Hybrid nanocomposites of ZIF-8 with graphene oxide exhibiting tunable morphology, significant CO2 uptake and other novel properties. Chem Commun 49(43):4947–4949CrossRefGoogle Scholar
  26. 26.
    Bian ZJ, Zhang SP, Zhu XM, Li YK, Liu HL, Hu J (2015) In-situ interfacial growth of zeolitic imidazolate framework (ZIF-8) nanoparticles induced by graphene oxide pickering emulsion. RSC Adv 5(40):31502–31505CrossRefGoogle Scholar
  27. 27.
    Yuan B, Wang B, Hu Y, Mu X, Hong N, Liew KM (2016) Electrical conductive and graphitizable polymer nanofibers grafted on graphene nanosheets: improving electrical conductivity and flame retardancy of polypropylene. Compos Part A-Appl S 84:76–86CrossRefGoogle Scholar
  28. 28.
    Jiang HL, Liu B, Akita T, Haruta M, Sakurai H, Xu Q (2009) Au@ ZIF-8: CO oxidation over gold nanoparticles deposited to metal–organic framework. J Am Chem Soc 131(32):11302–11303CrossRefGoogle Scholar
  29. 29.
    Xiang Q, Yu J, Jaroniec M (2011) Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale 3(9):3670–3678CrossRefGoogle Scholar
  30. 30.
    Fan J, Liu S, Yu J (2012) Enhanced photovoltaic performance of dye-sensitized solar cells based on TiO2 nanosheets/graphene composite films. J Mater Chem 22(33):17027–17036CrossRefGoogle Scholar
  31. 31.
    Dai X, Cao Y, Shi X, Wang X (2016) Non-isothermal crystallization kinetics, thermal degradation behavior and mechanical properties of poly(lactic acid)/MOF composites prepared by melt-blending methods. RSC Adv 6(75):71461–71471CrossRefGoogle Scholar
  32. 32.
    Zhang J, Jiang L, Zhu L, Jane JL, Mungara P (2006) Morphology and properties of soy protein and polylactide blends. Biomacromolecules 7(5):1551–1561CrossRefGoogle Scholar
  33. 33.
    Kuo SW, Tsai HT (2009) Complementary multiple hydrogen-bonding interactions increase the glass transition temperatures to PMMA copolymer mixtures. Macromolecules 42(13):4701–4711CrossRefGoogle Scholar
  34. 34.
    Arias A, Heuzey MC, Huneault MA (2013) Thermomechanical and crystallization behavior of polylactide-based flax fiber biocomposites. Cellulose 20(1):439–452CrossRefGoogle Scholar
  35. 35.
    Shan GF, Yang W, Tang XG, Yang MB, Xie BH, Fu Q, Mai YW (2010) Multiple melting behaviour of annealed crystalline polymers. Polym Test 29(2):273–280CrossRefGoogle Scholar
  36. 36.
    Gui Z, Lu C, Cheng S (2013) Comparison of the effects of commercial nucleation agents on the crystallization and melting behaviour of polylactide. Polym Test 32(1):15–21CrossRefGoogle Scholar
  37. 37.
    Barrau S, Vanmansart C, Moreau M, Addad A, Stoclet G, Lefebvre JM, Seguela R (2011) Crystallization behavior of carbon nanotube–polylactide nanocomposites. Macromolecules 44(16):6496–6502CrossRefGoogle Scholar
  38. 38.
    Song QL, Nataraj SK, Roussenova MV, Tan JC, Hughes DJ, Li W, Bourgoin P, Alam MA, Cheetham AK, Al-Muhtaseb SA, Sivaniah E (2012) Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ Sci 5(8):8359–8369CrossRefGoogle Scholar
  39. 39.
    Yao W, Zhao M, Dai Y, Tang J, Xu J (2017) Micro-/mesoporous zinc–manganese oxide/graphene hybrids with high specific surface area: a high-capacity, superior-rate, and ultralong-life anode for lithium storage. Chemelectrochem 4:230–235CrossRefGoogle Scholar
  40. 40.
    Dong S, Tong M, Zhang D, Huang T (2017) The strategy of nitrite and immunoassay human igg biosensors based on Zno@ZIF-8 and ionic liquid composite film. Sens Actuators B Chem 251:650–657CrossRefGoogle Scholar
  41. 41.
    Cui Y, Stojakovic J, Kijima H, Myerson AS (2016) Mechanism of contact-induced heterogeneous nucleation. Cryst Growth Des 16(10):6131–6138CrossRefGoogle Scholar
  42. 42.
    John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364CrossRefGoogle Scholar
  43. 43.
    Tandon GP, Weng GJ (2010) The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites. Polym Compos 5(4):327–333CrossRefGoogle Scholar
  44. 44.
    Kathuria A, Abiad MG, Auras R (2013) Toughening of poly(L-lactic acid) with Cu3BTC2, metal organic framework crystals. Polymer 54(26):6979–6986CrossRefGoogle Scholar
  45. 45.
    Shi XW, Dai X, Cao Y, Li JW, Huo CA, Wang XL (2017) Degradable Poly (lactic acid)/metal–organic framework nanocomposites exhibiting good mechanical, flame retardant, and dielectric properties for the fabrication of disposable electronics. Ind Eng Chem Res 56(14):3887–3894CrossRefGoogle Scholar
  46. 46.
    Jang JY, Jeong TK, Oh HJ, Youn JR, Song YS (2012) Thermal stability and flammability of coconut fiber reinforced poly (lactic acid) composites. Compos Part B Eng 43(5):434–2438CrossRefGoogle Scholar
  47. 47.
    Feng H, Wang X, Wu D (2013) Fabrication of spirocyclic phosphazene epoxy-based nanocomposites with graphene via exfoliation of graphite platelets and thermal curing for enhancement of mechanical and conductive properties. Ind Eng Chem Res 52(30):10160–10171CrossRefGoogle Scholar
  48. 48.
    Dasari A, Yu ZZ, Mai YW, Cai G, Song H (2009) Roles of graphite oxide, clay and POSS during the combustion of polyamide 6. Polymer 50(6):1577–1587CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations