Advertisement

Journal of Materials Science

, Volume 53, Issue 9, pp 6741–6751 | Cite as

Improved densification and thermoelectric performance of In5SnSbO12 via Ga doping

  • Beibei Zhu
  • Tianshu Zhang
  • Yubo Luo
  • Yu Wang
  • Thiam Teck Tan
  • Richard Donelson
  • Huey Hoon Hng
  • Sean Li
Electronic materials

Abstract

In5SnSbO12 is being considered for use in thermoelectric applications. It has a satisfactory electrical conductivity and is expected to possess low thermal conductivity. However, it is difficult to densify In5SnSbO12 by conventional solid-state reaction method. In this work, we demonstrated that Ga doping could increase the relative density of In5SnSbO12, from ~ 60% (x = 0) to ~ 90% (x = 0.1). The improved densification may be attributable to the increased cationic occupancy after the addition of Ga and the reduced grain size induced by the presence of the secondary phase Ga2In6Sn2O16. The improved relative density led to a significant reduction in electrical resistivity; for example, for x = 0.1, the lowest electrical resistivity was ~ 0.002 Ω cm at 973 K, which was five times lower than that of the undoped sample (x = 0). The resultant power factor of this sample had a value of 3.4 × 10−4 Wm−1 K−2 at 973 K, which was nearly four times higher than that of the undoped sample. Although thermal conductivities were increased with Ga doping due to the enhanced densification, they were lower than that of In2O3. The highest thermoelectric performance was achieved in the sample with x = 0.05, specifically zT ~ 0.17 at 973 K. These results indicate that the addition of Ga to In5SnSbO12 results in a material which is more promising for thermoelectric applications.

Notes

Acknowledgements

The authors would like to acknowledge Australian Research Council Project of DP110102662, FT100100956, LP120200289, DP150103006, Baosteel, and Australian Renewable Energy Agency (ARENA) for the financial support in this research Project.

Supplementary material

10853_2018_2048_MOESM1_ESM.docx (611 kb)
Supplementary material 1 (DOCX 611 kb)

References

  1. 1.
    Tritt TM, Subramanian M (2006) Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull 31(03):188–198CrossRefGoogle Scholar
  2. 2.
    Rowe DM (1995) CRC handbook of thermoelectrics. CRC Press, Boca RatonCrossRefGoogle Scholar
  3. 3.
    Rowe DM (2005) Thermoelectrics handbook: macro to nano. CRC Press, Boca RatonCrossRefGoogle Scholar
  4. 4.
    Mahan GD (1991) The Benedicks effect: nonlocal electron transport in metals. Phys Rev B 43(5):3945–3951CrossRefGoogle Scholar
  5. 5.
    Koumoto K et al (2010) Oxide thermoelectric materials: a nanostructuring approach. Annu Rev Mater Res 40(1):363–394CrossRefGoogle Scholar
  6. 6.
    Koumoto K et al (2013) Thermoelectric ceramics for energy harvesting. J Am Ceram Soc 96(1):1–23CrossRefGoogle Scholar
  7. 7.
    Yin Y, Tudu B, Tiwari A (2017) Recent advances in oxide thermoelectric materials and modules. Vacuum 146:356–374CrossRefGoogle Scholar
  8. 8.
    Terasaki I, Sasago Y, Uchinokura K (1997) Large thermoelectric power in NaCo2O4 single crystals. Phys Rev B 56(20):R12685CrossRefGoogle Scholar
  9. 9.
    Takahata K et al (2000) Low thermal conductivity of the layered oxide (Na, Ca)Co2O4: another example of a phonon glass and an electron crystal. Phys Rev B 61(19):12551CrossRefGoogle Scholar
  10. 10.
    Wang Y et al (2003) Spin entropy as the likely source of enhanced thermopower in NaxCo2O4. Nature 423:425CrossRefGoogle Scholar
  11. 11.
    Masset AC et al (2000) Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys Rev B 62(1):166–175CrossRefGoogle Scholar
  12. 12.
    Ryoji F et al (2000) An oxide single crystal with high thermoelectric performance in air. Jpn J Appl Phys 39(11B):L1127Google Scholar
  13. 13.
    Guilmeau E et al (2004) Thermoelectric properties–texture relationship in highly oriented Ca3Co4O9 composites. Appl Phys Lett 85(9):1490–1492CrossRefGoogle Scholar
  14. 14.
    Van Nong N et al (2011) Enhancement of the thermoelectric performance of p-type layered oxide Ca3Co4O9+δ through heavy doping and metallic nanoinclusions. Adv Mater 23(21):2484–2490CrossRefGoogle Scholar
  15. 15.
    Zhao L et al (2010) Bi1−xSrxCuSeO oxyselenides as promising thermoelectric materials. Appl Phys Lett 97(9):092118CrossRefGoogle Scholar
  16. 16.
    Ohtaki M et al (1995) Electrical transport properties and high-temperature thermoelectric performance of (Ca0.9M0.1) MnO3 (M = Y, La, Ce, Sm, In, Sn, Sb, Pb, Bi). J Solid State Chem 120(1):105–111CrossRefGoogle Scholar
  17. 17.
    Flahaut D et al (2006) Thermoelectrical properties of A-site substituted Ca1−xRexMnO3 system. J Appl Phys 100(8):084911CrossRefGoogle Scholar
  18. 18.
    Bocher L et al (2008) CaMn1−x NbxO3 (x ≤ 0.08) Perovskite-type phases as promising new high-temperature n-type thermoelectric materials. Inorg Chem 47(18):8077–8085CrossRefGoogle Scholar
  19. 19.
    Ohta S, Ohta H, Koumoto K (2006) Grain size dependence of thermoelectric performance of Nb-doped SrTiO3 polycrystals. J Ceram Soc Jpn 114(1325):102–105CrossRefGoogle Scholar
  20. 20.
    Ohta S et al (2005) Large thermoelectric performance of heavily Nb-doped SrTiO3 epitaxial film at high temperature. Appl Phys Lett 87(9):092108CrossRefGoogle Scholar
  21. 21.
    Ohta H et al (2007) Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat Mater 6:129CrossRefGoogle Scholar
  22. 22.
    Wang Y et al (2009) Thermoelectric properties of electron doped SrO(SrTiO3)n (n = 1,2) ceramics. J Appl Phys 105(10):103701CrossRefGoogle Scholar
  23. 23.
    Wang N et al (2010) Thermoelectric properties of Nb-doped SrTiO3 ceramics enhanced by potassium titanate nanowires addition. J Ceram Soc Jpn 118(1383):1098–1101CrossRefGoogle Scholar
  24. 24.
    Iyasara AC et al (2017) La and Sm Co-doped SrTiO3−δ thermoelectric ceramics. Mater Today Proc 4(12):12360–12367CrossRefGoogle Scholar
  25. 25.
    Ohtaki M et al (1996) High-temperature thermoelectric properties of (Zn1−xAlx) O. J Appl Phys 79(3):1816–1818CrossRefGoogle Scholar
  26. 26.
    Tsubota T et al (1997) Thermoelectric properties of Al-doped ZnO as a promising oxidematerial for high-temperature thermoelectric conversion. J Mater Chem 7(1):85–90CrossRefGoogle Scholar
  27. 27.
    Ohtaki M, Araki K, Yamamoto K (2009) High thermoelectric performance of dually doped ZnO ceramics. J Electron Mater 38(7):1234–1238CrossRefGoogle Scholar
  28. 28.
    Jood P et al (2011) Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties. Nano Lett 11(10):4337–4342CrossRefGoogle Scholar
  29. 29.
    Jood P et al (2014) Heavy element doping for enhancing thermoelectric properties of nanostructured zinc oxide. RSC Adv 4(13):6363–6368CrossRefGoogle Scholar
  30. 30.
    Guilmeau E et al (2017) Inversion boundaries and phonon scattering in Ga:ZnO thermoelectric compounds. Inorg Chem 56(1):480–487CrossRefGoogle Scholar
  31. 31.
    Berardan D et al (2008) Enhancement of the thermoelectric performances of In2O3 by the coupled substitution of M2+/Sn4+ for In3+. J Appl Phys 104(6):064918CrossRefGoogle Scholar
  32. 32.
    Bérardan D et al (2008) In2O3: Ge, a promising n-type thermoelectric oxide composite. Solid State Commun 146(1–2):97–101CrossRefGoogle Scholar
  33. 33.
    Bhame S et al (2010) Synthesis and thermoelectric properties of oxygen deficient fluorite derivative Ga3−xIn5+xSn2O16. J Appl Phys 108(9):093708CrossRefGoogle Scholar
  34. 34.
    Combe E et al (2015) Microwave sintering of Ge-doped In2O3 thermoelectric ceramics prepared by slip casting process. J Eur Ceram Soc 35(1):145–151CrossRefGoogle Scholar
  35. 35.
    Zhou T et al (2011) Enhanced densification and thermoelectric performance of In4Sn3O12 by reactive sintering in the In–Sn–Ga–O system. J Am Ceram Soc 94(11):3733–3737CrossRefGoogle Scholar
  36. 36.
    Guilmeau E et al (2009) Tuning the transport and thermoelectric properties of In2O3 bulk ceramics through doping at In-site. J Appl Phys 106(5):053715-1–053715-7CrossRefGoogle Scholar
  37. 37.
    Ohta H, Seo W-S, Koumoto K (1996) Thermoelectric properties of homologous compounds in the ZnO–In2O3 system. J Am Ceram Soc 79(8):2193–2196CrossRefGoogle Scholar
  38. 38.
    Shinya I et al (2002) Thermoelectric performance of yttrium-substituted (ZnO)5In2O3 improved through ceramic texturing. Jpn J Appl Phys 41(2R):731Google Scholar
  39. 39.
    Liang X, Clarke DR (2014) Relation between thermoelectric properties and phase equilibria in the ZnO–In2O3 binary system. Acta Mater 63:191–201CrossRefGoogle Scholar
  40. 40.
    Košir M et al (2017) Structural features and thermoelectric properties of Al-doped (ZnO)5In2O3 homologous phases. J Am Ceram Soc 100(8):3712–3721CrossRefGoogle Scholar
  41. 41.
    Košir M et al (2017) Phase formation, microstructure development and thermoelectric properties of (ZnO)kIn2O3 ceramics. J Eur Ceram Soc 37(8):2833–2842CrossRefGoogle Scholar
  42. 42.
    Koida T, Kondo M (2007) Comparative studies of transparent conductive Ti-, Zr-, and Sn-doped In2O3 using a combinatorial approach. J Appl Phys 101(6):063713CrossRefGoogle Scholar
  43. 43.
    Liu Y et al (2012) High temperature transport property of In2−xCexO3 (0 ≤ x ≤ 0.10) fine grained ceramics. J Am Ceram Soc 95(8):2568–2572CrossRefGoogle Scholar
  44. 44.
    Pitschke W et al (2000) Structure and thermoelectric properties of Me-substituted In4Sn3O12, Me = Y and Ti. J Solid State Chem 153(2):349–356CrossRefGoogle Scholar
  45. 45.
    Bartram SF (1966) Crystal Structure of the Rhombohedral MO3·3R2O3 Compounds (M = U, W, or Mo) and their relation to ordered R7O12 phases. Inorg Chem 5(5):749–754CrossRefGoogle Scholar
  46. 46.
    Nadaud N et al (1998) Structural studies of tin-doped indium oxide (ITO) and In4Sn3O12. J Solid State Chem 135(1):140–148CrossRefGoogle Scholar
  47. 47.
    Choisnet J et al (2004) New transparent conductors with the M7O12 ordered oxygen-deficient fluorite structure: from In4Sn3O12 to In5.5Sb1.5O12. J Solid State Chem 177(10):3748–3751CrossRefGoogle Scholar
  48. 48.
    Kubelka P (1931) The Kubelka–Munk theory of reflectance. Z Tech Phys 12:539Google Scholar
  49. 49.
    Park S-M, Ikegami T, Ebihara K (2006) Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition. Thin Solid Films 513(1):90–94CrossRefGoogle Scholar
  50. 50.
    Choisnet J et al (2007) Cation ordering in the fluorite-like transparent conductors In4+xSn3−2xSbxO12 and In6TeO12. J Solid State Chem 180(3):1002–1010CrossRefGoogle Scholar
  51. 51.
    Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32(5):751–767CrossRefGoogle Scholar
  52. 52.
    Zhang D-L et al (2016) Thermodynamic study on diffusion growth of Ga3+-doped LiNbO3 single crystal thin film for photonic application. Cryst Growth Des 16(3):1300–1305CrossRefGoogle Scholar
  53. 53.
    Si H et al (2017) Deciphering the NH4PbI3 intermediate phase for simultaneous improvement on nucleation and crystal growth of perovskite. Adv Func Mater 27(30):1701804CrossRefGoogle Scholar
  54. 54.
    Cui J et al (2017) Significantly enhanced thermoelectric performance of γ-In2Se3 through lithiation via chemical diffusion. Chem Mater 29:7467CrossRefGoogle Scholar
  55. 55.
    Maglia F, Tredici IG, Anselmi-Tamburini U (2013) Densification and properties of bulk nanocrystalline functional ceramics with grain size below 50 nm. J Eur Ceram Soc 33(6):1045–1066CrossRefGoogle Scholar
  56. 56.
    Ziman J (1961) Electrons and phonons. Oxford University Press, LondonGoogle Scholar
  57. 57.
    Dolgonos A et al (2014) Electronic and optical properties of Ga3−xIn5+xSn2O16: an experimental and theoretical study. J Appl Phys 115(1):013703CrossRefGoogle Scholar
  58. 58.
    Ren C-Y, Chiou S-H, Choisnet J (2006) First-principles calculations of the electronic band structure of In4Sn3O12 and In5SnSbO12. J Appl Phys 99(2):023706CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.School of Materials Science and EngineeringThe University of New South WalesSydneyAustralia
  3. 3.Solid State and Elemental Analysis UnitThe University of New South WalesSydneyAustralia
  4. 4.CSIROClayton SouthAustralia

Personalised recommendations