Skip to main content

Advertisement

Log in

A review of non-destructive techniques used for mechanical damage assessment in polymer composites

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polymer composite materials are being increasingly used in primary load-bearing structures in several advanced industrial fields such as aerospace vessels, railway wagons and mega-scaled wind turbines where detection of subcritical damage initiation can significantly reduce safety issues and maintenance costs. It is therefore crucial to inspect these composite structures in order to assess their structural health and to ensure their integrity. Non-destructive testing techniques (NDT) are used for this purpose, making it possible to monitor mechanical damage of composite materials under in situ or ex situ service conditions. This paper reviews the capabilities of the most common NDT techniques used to inspect the integrity of composite materials. Each technique has a detection potential and cannot allow a full diagnosis of the mechanical damage state of the material. Thus, depending on the occurring damage mechanism and the conditions of use, one technique will be preferred over another, or several techniques should be combined to improve the diagnosis of the damage state of the structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Passipoularidis VA, Philippidis TP, Brondsted P (2011) Fatigue life prediction in composites using progressive damage modelling under block and spectrum loading. Int J Fatigue 33(2):132–144. https://doi.org/10.1016/j.ijfatigue.2010.07.011

    Article  Google Scholar 

  2. Post NL, Case SW, Lesko JJ (2008) Modeling the variable amplitude fatigue of composite materials: a review and evaluation of the state of the art for spectrum loading. Int J Fatigue 30(12):2064–2086. https://doi.org/10.1016/j.ijfatigue.2008.07.002

    Article  Google Scholar 

  3. Su Z, Ye L, Lu Y (2006) Guided Lamb waves for identification of damage in composite structures: a review. J Sound Vib 295(3–5):753–780. https://doi.org/10.1016/j.jsv.2006.01.020

    Article  Google Scholar 

  4. Hung Y, Chen YS, Ng S, Liu L, Huang Y, Luk B, Ip R, Wu C, Chung P (2009) Review and comparison of shearography and active thermography for nondestructive evaluation. Mater Sci Eng R Rep 64(5):73–112

    Article  Google Scholar 

  5. Francis D, Tatam R, Groves R (2010) Shearography technology and applications: a review. Meas Sci Technol 21(10):102–131

    Article  Google Scholar 

  6. Zhu Y-K, Tian G-Y, Lu R-S, Zhang H (2011) A review of optical NDT technologies. Sensors 11(8):7773–7798

    Article  Google Scholar 

  7. Jolly M, Prabhakar A, Sturzu B, Hollstein K, Singh R, Thomas S, Foote P, Shaw A (2015) Review of non-destructive testing (NDT) techniques and their applicability to thick walled composites. Procedia CIRP 38:129–136

    Article  Google Scholar 

  8. Li D, Ho S-CM, Song G, Ren L, Li H (2015) A review of damage detection methods for wind turbine blades. Smart Mater Struct 24(3):33–57

    Article  Google Scholar 

  9. Mitra M, Gopalakrishnan S (2016) Guided wave based structural health monitoring: a review. Smart Mater Struct 25(5):53–80

    Article  Google Scholar 

  10. Raghavan A, Cesnik CE (2007) Review of guided-wave structural health monitoring. Shock Vib Dig 39(2):91–116

    Article  Google Scholar 

  11. Sun Z, Rocha B, Wu K-T, Mrad N (2013) A methodological review of piezoelectric based acoustic wave generation and detection techniques for structural health monitoring. Int J Aerosp Eng 2013:66–68

    Article  Google Scholar 

  12. Smith R, Xie N, Hallett S (2016) Non-destrucitve characterisation of composite microstructures. JEC Compos Mag 109:59–61

    Google Scholar 

  13. Hild F, Bouterf A, Roux S (2015) Damage measurements via DIC. Int J Fract 191(1–2):77–105

    Article  Google Scholar 

  14. Gholizadeh S (2016) A review of non-destructive testing methods of composite materials. Procedia Struct Integr 1:50–57

    Article  Google Scholar 

  15. Awaja F, Zhang S, Tripathi M, Nikiforov A, Pugno N (2016) Cracks, microcracks and fracture in polymer structures: formation, detection, autonomic repair. Prog Mater Sci 83:536–573

    Article  Google Scholar 

  16. Böhm R, Hufenbach W (2010) Experimentally based strategy for damage analysis of textile-reinforced composites under static loading. Compos Sci Technol 70(9):1330–1337. https://doi.org/10.1016/j.compscitech.2010.04.008

    Article  Google Scholar 

  17. Ettouney M, Alampalli S (2013) Review of infrastructure health in civil engineering, volume II: applications and management. Journal of Performance of Constructed Facilities, Reston, pp 248–277

    Google Scholar 

  18. Peng T, Liu Y, Saxena A, Goebel K (2015) In-situ fatigue life prognosis for composite laminates based on stiffness degradation. Compos Struct 132:155–165. https://doi.org/10.1016/j.compstruct.2015.05.006

    Article  Google Scholar 

  19. Montesano J, Fawaz Z, Bougherara H (2015) Non-destructive assessment of the fatigue strength and damage progression of satin woven fiber reinforced polymer matrix composites. Compos Part B Eng 71:122–130

    Article  Google Scholar 

  20. Arif MF, Saintier N, Meraghni F, Fitoussi J, Chemisky Y, Robert G (2014) Multiscale fatigue damage characterization in short glass fiber reinforced polyamide-66. Compos Part B Eng 61:55–65

    Article  Google Scholar 

  21. Rolland H, Saintier N, Robert G (2016) Damage mechanisms in short glass fibre reinforced thermoplastic during in situ microtomography tensile tests. Compos Part B Eng 90:365–377. https://doi.org/10.1016/j.compositesb.2015.12.021

    Article  Google Scholar 

  22. Yu B, Blanc R, Soutis C, Withers P (2016) Evolution of damage during the fatigue of 3D woven glass-fibre reinforced composites subjected to tension–tension loading observed by time-lapse X-ray tomography. Compos Part A Appl Sci Manuf 82:279–290

    Article  Google Scholar 

  23. Berthelot J, Rhazi J (1990) Acoustic emission in carbon fibre composites. Compos Sci Technol 37(4):411–428

    Article  Google Scholar 

  24. Kordatos EZ, Dassios KG, Aggelis DG, Matikas TE (2013) Rapid evaluation of the fatigue limit in composites using infrared lock-in thermography and acoustic emission. Mech Res Commun 54:14–20. https://doi.org/10.1016/j.mechrescom.2013.09.005

    Article  Google Scholar 

  25. Chou HY, Mouritz AP, Bannister MK, Bunsell AR (2015) Acoustic emission analysis of composite pressure vessels under constant and cyclic pressure. Compos Part A Appl Sci Manuf 70:111–120. https://doi.org/10.1016/j.compositesa.2014.11.027

    Article  Google Scholar 

  26. Masmoudi S, El Mahi A, Turki S (2016) Fatigue behaviour and structural health monitoring by acoustic emission of E-glass/epoxy laminates with piezoelectric implant. Appl Acoust 108:50–58. https://doi.org/10.1016/j.apacoust.2015.10.024

    Article  Google Scholar 

  27. Momon S, Moevus M, Godin N, R’Mili M, Reynaud P, Fantozzi G, Fayolle G (2010) Acoustic emission and lifetime prediction during static fatigue tests on ceramic-matrix-composite at high temperature under air. Compos Part A Appl Sci Manuf 41(7):913–918. https://doi.org/10.1016/j.compositesa.2010.03.008

    Article  Google Scholar 

  28. Huguet S, Godin N, Gaertner R, Salmon L, Villard D (2002) Use of acoustic emission to identify damage modes in glass fibre reinforced polyester. Compos Sci Technol 62(10):1433–1444

    Article  Google Scholar 

  29. Doan DD, Ramasso E, Placet V, Zhang S, Boubakar L, Zerhouni N (2015) An unsupervised pattern recognition approach for AE data originating from fatigue tests on polymer–composite materials. Mech Syst Signal Process 64:465–478. https://doi.org/10.1016/j.ymssp.2015.04.011

    Article  Google Scholar 

  30. Skawinski O, Hulot P, Binétruy C, Rasche C (2008) Structural integrity evaluation of CNG composite cylinders by acoustic emission monitoring. J Acoust Emiss 26:120–131

    Google Scholar 

  31. Krawczak P, Pabiot J (1994) Acoustic emission applied to glass fibre/organic thermosetting matrix interface characterization. Appl Compos Mater 1(5):373–386

    Article  Google Scholar 

  32. Calabrese L, Campanella G, Proverbio E (2012) Noise removal by cluster analysis after long time AE corrosion monitoring of steel reinforcement in concrete. Constr Build Mater 34:362–371. https://doi.org/10.1016/j.conbuildmat.2012.02.046

    Article  Google Scholar 

  33. Godin N, Huguet S, Gaertner R (2005) Integration of the Kohonen’s self-organising map and k-means algorithm for the segmentation of the AE data collected during tensile tests on cross-ply composites. NDT and E Int 38(4):299–309. https://doi.org/10.1016/j.ndteint.2004.09.006

    Article  Google Scholar 

  34. Pomponi E, Vinogradov A (2013) A real-time approach to acoustic emission clustering. Mech Syst Signal Process 40(2):791–804. https://doi.org/10.1016/j.ymssp.2013.03.017

    Article  Google Scholar 

  35. Kharrat M, Placet V, Ramasso E, Boubakar ML (2016) Influence of damage accumulation under fatigue loading on the AE-based health assessment of composite materials: wave distortion and AE-features evolution as a function of damage level. Compos Part A Appl Sci Manuf. https://doi.org/10.1016/j.compositesa.2016.03.020

    Google Scholar 

  36. Marec A, Thomas JH, El Guerjouma R (2008) Damage characterization of polymer-based composite materials: multivariable analysis and wavelet transform for clustering acoustic emission data. Mech Syst Signal Process 22(6):1441–1464. https://doi.org/10.1016/j.ymssp.2007.11.029

    Article  Google Scholar 

  37. Al-Jumaili SK, Holford KM, Eaton MJ, Pullin R (2015) Parameter correction technique (PCT): a novel method for acoustic emission characterisation in large-scale composites. Compos Part B Eng 75:336–344. https://doi.org/10.1016/j.compositesb.2015.01.044

    Article  Google Scholar 

  38. Crivelli D, Guagliano M, Eaton M, Pearson M, Al-Jumaili S, Holford K, Pullin R (2015) Localisation and identification of fatigue matrix cracking and delamination in a carbon fibre panel by acoustic emission. Compos Part B Eng 74:1–12. https://doi.org/10.1016/j.compositesb.2014.12.032

    Article  Google Scholar 

  39. Kinra VK, Ganpatye AS, Maslov K (2006) Ultrasonic ply-by-ply detection of matrix cracks in laminated composites. J Nondestruct Eval 25(1):37–49

    Article  Google Scholar 

  40. Harizi W, Chaki S, Bourse G, Ourak M (2015) Mechanical damage characterization of glass fiber-reinforced polymer laminates by ultrasonic maps. Compos Part B Eng 70:131–137

    Article  Google Scholar 

  41. Lawrence CW, Briggs GAD, Scruby CB, Davies JRR (1993) Acoustic microscopy of ceramic-fibre composites. J Mater Sci 28(13):3635–3644. https://doi.org/10.1007/bf01159847

    Article  Google Scholar 

  42. Kimpara I, Takehana M, Suzuki T (1978) Analysis of thickness-direction ultrasonic wave propagation of fiberglass reinforced plastics laminates. In: ICCM/2; proceedings of the second international conference on composite materials, Toronto, Canada, April 16–20, pp 1104–1122

  43. Borum KK (2006) Evaluation of the quality of thick fibre composites using immersion and air-coupled ultrasonic techniques. In: Proceedings of European conference on non-destructive testing, Berlin, 25–29/09 2006

  44. Hawkins G, Sheaffer P, Johnson E (1991) NDE of thick composites in the aerospace industry—an overview. In: Thompson DO, Chimenti DE (eds) Review of progress in quantitative nondestructive evaluation. Springer, pp 1591–1597

  45. Frankle RS, Rose DN (1995) Flexible ultrasonic array system for inspecting thick composite structures. In: Proceedings of nondestructive evaluation of aging infrastructure, Oakland, USA, International Society for Optics and Photonics, pp 51–59

  46. Li C, Pain D, Wilcox PD, Drinkwater BW (2013) Imaging composite material using ultrasonic arrays. NDT and E Int 53:8–17

    Article  Google Scholar 

  47. Hsu DK, Barnard DJ (2006) Inspecting composites with airborne ultrasound: through thick and thin. In: Proceedings of quantitative nondestructive evaluation, vol 1. AIP Publishing, pp 991–998

  48. Revel GM, Pandarese G, Cavuto A (2013) Advanced ultrasonic non-destructive testing for damage detection on thick and curved composite elements for constructions. J Sandw Struct Mater 15(1):5–24

    Article  Google Scholar 

  49. Toyama N, Yashiro S, Takatsubo J, Okabe T (2005) Stiffness evaluation and damage identification in composite beam under tension using Lamb waves. Acta Mater 53(16):4389–4397. https://doi.org/10.1016/j.actamat.2005.05.043

    Article  Google Scholar 

  50. Ramadas C, Padiyar J, Balasubramaniam K, Joshi M, Krishnamurthy C (2011) Lamb wave based ultrasonic imaging of interface delamination in a composite T-joint. NDT and E Int 44(6):523–530

    Article  Google Scholar 

  51. Ramadas C, Hood A, Khan I, Balasubramaniam K, Joshi M (2013) Transmission and reflection of the fundamental Lamb modes in a metallic plate with a semi-infinite horizontal crack. Ultrasonics 53(3):773–781. https://doi.org/10.1016/j.ultras.2012.11.004

    Article  Google Scholar 

  52. Rheinfurth M, Schmidt F, Döring D, Solodov I, Busse G, Horst P (2011) Air-coupled guided waves combined with thermography for monitoring fatigue in biaxially loaded composite tubes. Compos Sci Technol 71(5):600–608. https://doi.org/10.1016/j.compscitech.2010.12.012

    Article  Google Scholar 

  53. Nagy PB (1998) Fatigue damage assessment by nonlinear ultrasonic materials characterization. Ultrasonics 36(1–5):375–381. https://doi.org/10.1016/S0041-624X(97)00040-1

    Article  Google Scholar 

  54. Koen E, Den Van, Abeele A (1996) Elastic pulsed wave propagation in media with second-or higher-order nonlinearity. Part I. Theoretical framework. J Acoust Soc Am 99(6):3334–3345

    Article  Google Scholar 

  55. Van Den Abeele KE, Sutin A, Carmeliet J, Johnson PA (2001) Micro-damage diagnostics using nonlinear elastic wave spectroscopy (NEWS). NDT and E Int 34(4):239–248

    Article  Google Scholar 

  56. Solodov IY, Krohn N, Busse G (2002) CAN: an example of nonclassical acoustic nonlinearity in solids. Ultrasonics 40(1):621–625

    Article  Google Scholar 

  57. Donskoy D, Sutin A, Ekimov A (2001) Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing. NDT and E Int 34(4):231–238

    Article  Google Scholar 

  58. Van Den Abeele K-A, Johnson PA, Sutin A (2000) Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: nonlinear wave modulation spectroscopy (NWMS). Res Nondestr Eval 12(1):17–30

    Article  Google Scholar 

  59. Klepka A, Staszewski W, Jenal R, Szwedo M, Iwaniec J, Uhl T (2012) Nonlinear acoustics for fatigue crack detection–experimental investigations of vibro-acoustic wave modulations. Struct Health Monit 11(2):197–211

    Article  Google Scholar 

  60. Klepka A, Pieczonka L, Staszewski W, Aymerich F (2014) Impact damage detection in laminated composites by non-linear vibro-acoustic wave modulations. Compos Part B Eng 65:99–108

    Article  Google Scholar 

  61. Aymerich F, Staszewski W (2010) Experimental study of impact-damage detection in composite laminates using a cross-modulation vibro-acoustic technique. Struct Health Monit 9(6):541–553

    Article  Google Scholar 

  62. Zaitsev VY, Gusev V, Castagnede B (2002) Observation of the “Luxemburg–Gorky effect” for elastic waves. Ultrasonics 40(1):627–631

    Article  Google Scholar 

  63. Korshak B, Solodov IY, Ballad E (2002) DC effects, sub-harmonics, stochasticity and “memory” for contact acoustic non-linearity. Ultrasonics 40(1):707–713

    Article  Google Scholar 

  64. Ulrich T, Sutin A, Guyer R, Johnson P (2008) Time reversal and non-linear elastic wave spectroscopy (TR NEWS) techniques. Int J Non-Linear Mech 43(3):209–216

    Article  Google Scholar 

  65. Goursolle T, Dos Santos S, Matar OB, Calle S (2008) Non-linear based time reversal acoustic applied to crack detection: Simulations and experiments. Int J Non-Linear Mech 43(3):170–177

    Article  Google Scholar 

  66. Meo M, Zumpano G (2005) Nonlinear elastic wave spectroscopy identification of impact damage on a sandwich plate. Compos Struct 71(3):469–474

    Article  Google Scholar 

  67. Solodov I, Bai J, Bekgulyan S, Busse G (2011) A local defect resonance to enhance acoustic wave-defect interaction in ultrasonic nondestructive evaluation. Appl Phys Lett 99(21):211–213

    Article  Google Scholar 

  68. Solodov I (2014) Resonant acoustic nonlinearity of defects for highly-efficient nonlinear NDE. J Nondestr Eval 33(2):252–262

    Article  Google Scholar 

  69. Delrue S, Tabatabaeipour M, Hettler J, Van Den Abeele K (2015) Non-destructive evaluation of kissing bonds using local defect resonance (LDR) spectroscopy: a simulation study. Phys Procedia 70(Supplement C):648–651. https://doi.org/10.1016/j.phpro.2015.08.067

    Article  Google Scholar 

  70. Post W, Kersemans M, Solodov I, Van Den Abeele K, García SJ, van der Zwaag S (2017) Non-destructive monitoring of delamination healing of a CFRP composite with a thermoplastic ionomer interlayer. Compos Part A Appl Sci Manuf 101(Supplement C):243–253. https://doi.org/10.1016/j.compositesa.2017.06.018

    Article  Google Scholar 

  71. Meo M, Polimeno U, Zumpano G (2008) Detecting damage in composite material using nonlinear elastic wave spectroscopy methods. Appl Compos Mater 15(3):115–126

    Article  Google Scholar 

  72. Aymerich F, Staszewski W (2010) Impact damage detection in composite laminates using nonlinear acoustics. Compos Part A Appl Sci Manuf 41(9):1084–1092

    Article  Google Scholar 

  73. Benaarbia A, Chrysochoos A, Robert G (2014) Kinetics of stored and dissipated energies associated with cyclic loadings of dry polyamide 6.6 specimens. Polym Test 34:155–167. https://doi.org/10.1016/j.polymertesting.2014.01.009

    Article  Google Scholar 

  74. Mahal M, Blanksvärd T, Täljsten B, Sas G (2015) Using digital image correlation to evaluate fatigue behavior of strengthened reinforced concrete beams. Eng Struct 105:277–288. https://doi.org/10.1016/j.engstruct.2015.10.017

    Article  Google Scholar 

  75. Tableau N, Aboura Z, Khellil K, Marcin L, Bouillon F (2017) Accurate measurement of in-plane and out-of-plane shear moduli on 3D woven SiC-SiBC material. Compos Struct 172(Supplement C):319–329. https://doi.org/10.1016/j.compstruct.2016.12.035

    Article  Google Scholar 

  76. Franz T (2001) Photoelastic study of the mechanic behaviour of orthotropic composite plates subjected to impact. Compos Struct 54(2–3):169–178. https://doi.org/10.1016/S0263-8223(01)00086-1

    Article  Google Scholar 

  77. Chen B, Basaran C (2012) Far-field modeling of Moiré interferometry using scalar diffraction theory. Opt Lasers Eng 50(8):1168–1176. https://doi.org/10.1016/j.optlaseng.2011.08.007

    Article  Google Scholar 

  78. Lammering R (2010) Observation of piezoelectrically induced Lamb wave propagation in thin plates by use of speckle interferometry. Exp Mech 50(3):377–387

    Article  Google Scholar 

  79. Ayadi A, Nouri H, Guessasma S, Roger F (2016) Large-scale X-Ray microtomography analysis of fiber orientation in weld line of short glass fiber reinforced thermoplastic and related elasticity behavior. Macromol Mater Eng 301(8):907–921

    Article  Google Scholar 

  80. Aparna ML, Chaitanya G, Srinivas K, Rao JA (2015) Fatigue testing of continuous GFRP composites using digital image correlation (DIC) technique: a review. Mater Today Proc 2(4–5):3125–3131. https://doi.org/10.1016/j.matpr.2015.07.275

    Article  Google Scholar 

  81. Comer AJ, Katnam KB, Stanley WF, Young TM (2013) Characterising the behaviour of composite single lap bonded joints using digital image correlation. Int J Adhes Adhes 40:215–223. https://doi.org/10.1016/j.ijadhadh.2012.08.010

    Article  Google Scholar 

  82. Brynk T, Molak RM, Janiszewska M, Pakiela Z (2012) Digital image correlation measurements as a tool of composites deformation description. Comput Mater Sci 64:157–161. https://doi.org/10.1016/j.commatsci.2012.04.034

    Article  Google Scholar 

  83. Crupi V, Guglielmino E, Risitano G, Tavilla F (2015) Experimental analyses of SFRP material under static and fatigue loading by means of thermographic and DIC techniques. Compos Part B Eng 77:268–277. https://doi.org/10.1016/j.compositesb.2015.03.052

    Article  Google Scholar 

  84. Giancane S, Panella FW, Nobile R, Dattoma V (2010) Fatigue damage evolution of fiber reinforced composites with digital image correlation analysis. Procedia Eng 2(1):1307–1315. https://doi.org/10.1016/j.proeng.2010.03.142

    Article  Google Scholar 

  85. Montesano J, Selezneva M, Levesque M, Fawaz Z (2015) Modeling fatigue damage evolution in polymer matrix composite structures and validation using in situ digital image correlation. Compos Struct 125:354–361. https://doi.org/10.1016/j.compstruct.2015.02.035

    Article  Google Scholar 

  86. Rolland H, Saintier N, Wilson P, Merzeau J, Robert G (2017) In situ X-ray tomography investigation on damage mechanisms in short glass fibre reinforced thermoplastics: effects of fibre orientation and relative humidity. Compos Part B Eng 109:170–186. https://doi.org/10.1016/j.compositesb.2016.10.043

    Article  Google Scholar 

  87. Prakash R (1980) Non-destructive testing of composites. Composites 11(4):217–224. https://doi.org/10.1016/0010-4361(80)90428-0

    Article  Google Scholar 

  88. Guild F, Vrellos N, Drinkwater B, Balhi N, Ogin S, Smith P (2006) Intra-laminar cracking in CFRP laminates: observations and modelling. J Mater Sci 41(20):6599–6609. https://doi.org/10.1007/s10853-006-0199-0

    Article  Google Scholar 

  89. Ataş A, Soutis C (2013) Subcritical damage mechanisms of bolted joints in CFRP composite laminates. Compos Part B Eng 54:20–27

    Article  Google Scholar 

  90. Scott AE, Mavrogordato M, Wright P, Sinclair I, Spearing SM (2011) In situ fibre fracture measurement in carbon–epoxy laminates using high resolution computed tomography. Compos Sci Technol 71(12):1471–1477. https://doi.org/10.1016/j.compscitech.2011.06.004

    Article  Google Scholar 

  91. Garcea SC, Sinclair I, Spearing SM (2015) In situ synchrotron tomographic evaluation of the effect of toughening strategies on fatigue micromechanisms in carbon fibre reinforced polymers. Compos Sci Technol 109(Supplement C):32–39. https://doi.org/10.1016/j.compscitech.2015.01.012

    Article  Google Scholar 

  92. Garcea SC, Mavrogordato MN, Scott AE, Sinclair I, Spearing SM (2014) Fatigue micromechanism characterisation in carbon fibre reinforced polymers using synchrotron radiation computed tomography. Compos Sci Technol 99:23–30. https://doi.org/10.1016/j.compscitech.2014.05.006

    Article  Google Scholar 

  93. Patterson BM, Escobedo-Diaz JP, Dennis-Koller D, Cerreta E (2012) Dimensional quantification of embedded voids or objects in three dimensions using X-ray tomography. Microsc Microanal 18(02):390–398

    Article  Google Scholar 

  94. Sket F, Enfedaque A, Alton C, González C, Molina-Aldareguia JM, Llorca J (2014) Automatic quantification of matrix cracking and fiber rotation by X-ray computed tomography in shear-deformed carbon fiber-reinforced laminates. Compos Sci Technol 90(Supplement C):129–138. https://doi.org/10.1016/j.compscitech.2013.10.022

    Article  Google Scholar 

  95. Cosmi F, Bernasconi A (2013) Micro-CT investigation on fatigue damage evolution in short fibre reinforced polymers. Compos Sci Technol 79:70–76

    Article  Google Scholar 

  96. Cosmi F, Ravalico C (2015) Threshold identification for micro-tomographic damage characterisation in a short-fibre-reinforced polymer. Strain 51(3):171–179

    Article  Google Scholar 

  97. Yu B, Bradley R, Soutis C, Withers P (2016) A comparison of different approaches for imaging cracks in composites by X-ray microtomography. Philos Trans R Soc A 374(2071):37–52

    Article  Google Scholar 

  98. Meola C, Carlomagno GM (2014) Infrared thermography to evaluate impact damage in glass/epoxy with manufacturing defects. Int J Impact Eng 67:1–11

    Article  Google Scholar 

  99. Colombo C, Vergani L, Burman M (2012) Static and fatigue characterisation of new basalt fibre reinforced composites. Compos Struct 94(3):1165–1174

    Article  Google Scholar 

  100. La Rosa G, Risitano A (2000) Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components. Int J Fatigue 22(1):65–73. https://doi.org/10.1016/S0142-1123(99)00088-2

    Article  Google Scholar 

  101. Montesano J, Fawaz Z, Bougherara H (2013) Use of infrared thermography to investigate the fatigue behavior of a carbon fiber reinforced polymer composite. Compos Struct 97:76–83. https://doi.org/10.1016/j.compstruct.2012.09.046

    Article  Google Scholar 

  102. Jegou L, Marco Y, Le Saux V, Calloch S (2013) Fast prediction of the Wöhler curve from heat build-up measurements on short fiber reinforced plastic. Int J Fatigue 47:259–267. https://doi.org/10.1016/j.ijfatigue.2012.09.007

    Article  Google Scholar 

  103. Harizi W, Chaki S, Bourse G, Ourak M (2014) Mechanical damage assessment of glass fiber-reinforced polymer composites using passive infrared thermography. Compos Part B Eng 59:74–79

    Article  Google Scholar 

  104. Cawley P (2006) Inspection of composites–current status and challenges. In: Proceedings of the European conference of nondestructive testing, London, UK

  105. Chen D, Wu N, Zhang Z (2012) Defect recognition in thermosonic imaging. Chin J Aeronaut 25(4):657–662. https://doi.org/10.1016/S1000-9361(11)60431-7

    Article  Google Scholar 

  106. Zacharia SG, Siddiqui A, Lahiri J (2012) In situ thermal diffusivity determination of anisotropic composite structures: transverse diffusivity measurement. NDT and E Int 48:1–9

    Article  Google Scholar 

  107. Rajic N (2002) Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structures. Compos Struct 58(4):521–528

    Article  Google Scholar 

  108. Vavilov V (2006) Determining limits of thermal NDT of thick graphite/epoxy composites. In: 9th European conference on nondestructive testing, Berlin, Germany, pp 25–29

  109. Toubal L, Karama M, Lorrain B (2006) Damage evolution and infrared thermography in woven composite laminates under fatigue loading. Int J Fatigue 28(12):1867–1872

    Article  Google Scholar 

  110. Harizi W, Chaki S, Bourse G, Ourak M (2014) Mechanical damage assessment of polymer–matrix composites using active infrared thermography. Compos Part B Eng 66:204–209. https://doi.org/10.1016/j.compositesb.2014.05.017

    Article  Google Scholar 

  111. Li Y, Z-w Yang, J-t Zhu, A-b Ming, Zhang W, J-y Zhang (2016) Investigation on the damage evolution in the impacted composite material based on active infrared thermography. NDT and E Int 83:114–122. https://doi.org/10.1016/j.ndteint.2016.06.008

    Article  Google Scholar 

  112. Meola C, Carlomagno GM, Squillace A, Vitiello A (2006) Non-destructive evaluation of aerospace materials with lock-in thermography. Eng Fail Anal 13(3):380–388

    Article  Google Scholar 

  113. Junyan L, Yang L, Fei W, Yang W (2015) Study on probability of detection (POD) determination using lock-in thermography for nondestructive inspection (NDI) of CFRP composite materials. Infrared Phys Technol 71:448–456. https://doi.org/10.1016/j.infrared.2015.06.007

    Article  Google Scholar 

  114. Jinlong G, Junyan L, Fei W, Yang W (2015) Inverse heat transfer approach for nondestructive estimation the size and depth of subsurface defects of CFRP composite using lock-in thermography. Infrared Phys Technol 71:439–447. https://doi.org/10.1016/j.infrared.2015.06.005

    Article  Google Scholar 

  115. Meola C, Di Maio R, Roberti N, Carlomagno GM (2005) Application of infrared thermography and geophysical methods for defect detection in architectural structures. Eng Fail Anal 12(6):875–892

    Article  Google Scholar 

  116. Cinzia T, Carosena M, Maria CG (2013) Porosity distribution in composite structures with infrared thermography. J Compos 2013:41–50

    Google Scholar 

  117. Fruehmann RK, Dulieu-Barton JM, Quinn S (2010) Assessment of fatigue damage evolution in woven composite materials using infra-red techniques. Compos Sci Technol 70(6):937–946. https://doi.org/10.1016/j.compscitech.2010.02.009

    Article  Google Scholar 

  118. Chrysafi AP, Athanasopoulos N, Siakavellas NJ (2017) Damage detection on composite materials with active thermography and digital image processing. Int J Therm Sci 116(Supplement C):242–253. https://doi.org/10.1016/j.ijthermalsci.2017.02.017

    Article  Google Scholar 

  119. Hung YY, Ho HP (2005) Shearography: an optical measurement technique and applications. Mater Sci Eng R Rep 49(3):61–87. https://doi.org/10.1016/j.mser.2005.04.001

    Article  Google Scholar 

  120. Murri W, Sermon B, Andersen R, Martinez L, Van der Heiden E, Garner C (1991) Defects in thick composites and some methods to locate them. In: Review of progress in quantitative nondestructive evaluation. Springer, pp 1583–1590

  121. De Angelis G, Meo M, Almond DP, Pickering SG, Angioni SL (2012) A new technique to detect defect size and depth in composite structures using digital shearography and unconstrained optimization. NDT and E Int 45(1):91–96. https://doi.org/10.1016/j.ndteint.2011.07.007

    Article  Google Scholar 

  122. Hung YY, Chen YS, Ng SP, Liu L, Huang YH, Luk BL, Ip RWL, Wu CML, Chung PS (2009) Review and comparison of shearography and active thermography for nondestructive evaluation. Mater Sci Eng R Rep 64(5–6):73–112. https://doi.org/10.1016/j.mser.2008.11.001

    Article  Google Scholar 

  123. Taillade F, Quiertant M, Benzarti K, Aubagnac C (2011) Shearography and pulsed stimulated infrared thermography applied to a nondestructive evaluation of FRP strengthening systems bonded on concrete structures. Constr Build Mater 25(2):568–574. https://doi.org/10.1016/j.conbuildmat.2010.02.019

    Article  Google Scholar 

  124. Lee J-R, Molimard J, Vautrin A, Surrel Y (2004) Application of grating shearography and speckle shearography to mechanical analysis of composite material. Compos Part A Appl Sci Manuf 35(7–8):965–976. https://doi.org/10.1016/j.compositesa.2004.01.023

    Article  Google Scholar 

  125. Hung YY, Luo WD, Lin L, Shang HM (2000) Evaluating the soundness of bonding using shearography. Compos Struct 50(4):353–362. https://doi.org/10.1016/S0263-8223(00)00109-4

    Article  Google Scholar 

  126. Dunkers JP, Parnas RS, Zimba CG, Peterson RC, Flynn KM, Fujimoto JG, Bouma BE (1999) Optical coherence tomography of glass reinforced polymer composites. Compos Part A Appl Sci Manuf 30(2):139–145. https://doi.org/10.1016/S1359-835X(98)00084-0

    Article  Google Scholar 

  127. Nyongesa HO, Otieno AW, Rosin PL (2001) Neural fuzzy analysis of delaminated composites from shearography imaging. Compos Struct 54(2–3):313–318. https://doi.org/10.1016/S0263-8223(01)00103-9

    Article  Google Scholar 

  128. Lopes H, Ferreira F, Araújo dos Santos JV, Moreno-García P (2014) Localization of damage with speckle shearography and higher order spatial derivatives. Mech Syst Signal Process 49(1):24–38. https://doi.org/10.1016/j.ymssp.2013.12.016

    Article  Google Scholar 

  129. Hung YY, Yang LX, Huang YH (2013) 5—non-destructive evaluation (NDE) of composites: digital shearography A2—Karbhari, Vistasp M. In: Non-destructive evaluation (NDE) of polymer matrix composites. Woodhead Publishing, pp 84–115. doi: https://doi.org/10.1533/9780857093554.1.84

  130. Sklarczyk C (2016) Microwave, millimeter wave and terahertz (MMT) techniques for materials characterization. In: Huebschen G, Altpeter I, Tschuncky R, Herrmann H.-G. (eds) Materials characterization using nondestructive evaluation (NDE) methods. Woodhead Publishing, p 125

  131. Anastasi RF Investigation of fiber waviness in a thick glass composite beam using THz NDE. In: 15th international symposium on: smart structures and materials and nondestructive evaluation and health monitoring, 2008. International Society for Optics and Photonics

  132. Ryu C-H, Park S-H, Kim D-H, Jhang K-Y, Kim H-S (2015) Nondestructive evaluation of hidden multi-delamination in a glass-fiber-reinforced plastic composite using terahertz spectroscopy. Compos Struct 156:338–347. https://doi.org/10.1016/j.compstruct.2015.09.055

    Article  Google Scholar 

  133. Redo-Sanchez A, Karpowicz N, Xu J, Zhang X (2006) Damage and defect inspection with terahertz waves. In: 4th international workshop on ultrasonic and advanced methods for nondestructive testing and material characterization, Dartmouth, USA, pp 67–78

  134. Naito K, Kagawa Y, Utsuno S, Naganuma T, Kurihara K (2009) Dielectric properties of eight-harness-stain fabric glass fiber reinforced polyimide matrix composite in the THz frequency range. NDT and E Int 42(5):441–445. https://doi.org/10.1016/j.ndteint.2009.02.001

    Article  Google Scholar 

  135. Bohn MJ, Petkie DT (2013) 18—terahertz applications in the aerospace industry A2—Saeedkia, Daryoosh. In: Saeedkia D (ed) Handbook of terahertz technology for imaging, sensing and communications. Woodhead Publishing, pp 510–546. doi:https://doi.org/10.1533/9780857096494.3.510

  136. Stoik C, Bohn M, Blackshire J (2010) Nondestructive evaluation of aircraft composites using reflective terahertz time domain spectroscopy. NDT and E Int 43(2):106–115. https://doi.org/10.1016/j.ndteint.2009.09.005

    Article  Google Scholar 

  137. Hsu DK, Lee K-S, Park J-W, Woo Y-D, Im K-H (2012) NDE inspection of terahertz waves in wind turbine composites. Int J Precis Eng Manuf 13(7):1183–1189. https://doi.org/10.1007/s12541-012-0157-5

    Article  Google Scholar 

  138. Todoroki A, Tanaka M, Shimamura Y (2002) Measurement of orthotropic electric conductance of CFRP laminates and analysis of the effect on delamination monitoring with an electric resistance change method. Compos Sci Technol 62(5):619–628. https://doi.org/10.1016/S0266-3538(02)00019-2

    Article  Google Scholar 

  139. Hayes SA, Lafferty AD, Altinkurt G, Wilson PR, Collinson M, Duchene P (2015) Direct electrical cure of carbon fiber composites. Adv Manuf Polym Compos Sci 1(2):112–119

    Google Scholar 

  140. Gigliotti M, Lafarie-Frenot MC, Lin Y, Pugliese A (2015) Electro-mechanical fatigue of CFRP laminates for aircraft applications. Compos Struct 127:436–449. https://doi.org/10.1016/j.compstruct.2015.01.023

    Article  Google Scholar 

  141. Angelidis N, Wei CY, Irving PE (2004) The electrical resistance response of continuous carbon fibre composite laminates to mechanical strain. Compos Part A Appl Sci Manuf 35(10):1135–1147. https://doi.org/10.1016/j.compositesa.2004.03.020

    Article  Google Scholar 

  142. Kupke M, Schulte K, Schüler R (2001) Non-destructive testing of FRP by d.c. and a.c. electrical methods. Compos Sci Technol 61(6):837–847. https://doi.org/10.1016/S0266-3538(00)00180-9

    Article  Google Scholar 

  143. Wang S, Chung D (2000) Piezoresistivity in continuous carbon fiber polymer-matrix composite. Polym Compos 21(1):13–19

    Article  Google Scholar 

  144. Wen J, Xia Z, Choy F (2011) Damage detection of carbon fiber reinforced polymer composites via electrical resistance measurement. Compos Part B Eng 42(1):77–86. https://doi.org/10.1016/j.compositesb.2010.08.005

    Article  Google Scholar 

  145. Wang S, Wang D, Chung D, Chung JH (2006) Method of sensing impact damage in carbon fiber polymer-matrix composite by electrical resistance measurement. J Mater Sci 41(8):2281–2289. https://doi.org/10.1007/s10853-006-7172-9

    Article  Google Scholar 

  146. Todoroki A (2001) The effect of number of electrodes and diagnostic tool for monitoring the delamination of CFRP laminates by changes in electrical resistance. Compos Sci Technol 61(13):1871–1880. https://doi.org/10.1016/S0266-3538(01)00088-4

    Article  Google Scholar 

  147. Todoroki A, Tanaka Y, Shimamura Y (2004) Multi-prove electric potential change method for delamination monitoring of graphite/epoxy composite plates using normalized response surfaces. Compos Sci Technol 64(5):749–758

    Article  Google Scholar 

  148. Todoroki A, Tanaka Y, Shimamura Y (2002) Delamination monitoring of graphite/epoxy laminated composite plate of electric resistance change method. Compos Sci Technol 62(9):1151–1160. https://doi.org/10.1016/S0266-3538(02)00053-2

    Article  Google Scholar 

  149. Todoroki A, Tanaka Y (2002) Delamination identification of cross-ply graphite/epoxy composite beams using electric resistance change method. Compos Sci Technol 62(5):629–639. https://doi.org/10.1016/S0266-3538(02)00013-1

    Article  Google Scholar 

  150. Suzuki Y, Todoroki A, Matsuzaki R, Mizutani Y (2012) Impact-damage visualization in CFRP by resistive heating: development of a new detection method for indentations caused by impact loads. Compos Part A Appl Sci Manuf 43(1):53–64. https://doi.org/10.1016/j.compositesa.2011.09.003

    Article  Google Scholar 

  151. Todoroki A, Omagari K, Shimamura Y, Kobayashi H (2006) Matrix crack detection of CFRP using electrical resistance change with integrated surface probes. Compos Sci Technol 66(11–12):1539–1545. https://doi.org/10.1016/j.compscitech.2005.11.029

    Article  Google Scholar 

  152. Todoroki A, Yoshida J (2004) Electrical resistance change of unidirectional CFRP due to applied load. JSME Int J, Ser A 47(3):357–364

    Article  Google Scholar 

  153. Schueler R, Joshi SP, Schulte K (2001) Damage detection in CFRP by electrical conductivity mapping. Compos Sci Technol 61(6):921–930. https://doi.org/10.1016/S0266-3538(00)00178-0

    Article  Google Scholar 

  154. Abry JC, Choi YK, Chateauminois A, Dalloz B, Giraud G, Salvia M (2001) In-situ monitoring of damage in CFRP laminates by means of AC and DC measurements. Compos Sci Technol 61(6):855–864. https://doi.org/10.1016/S0266-3538(00)00181-0

    Article  Google Scholar 

  155. Schulte K, Baron C (1989) Load and failure analyses of CFRP laminates by means of electrical resistivity measurements. Compos Sci Technol 36(1):63–76. https://doi.org/10.1016/0266-3538(89)90016-X

    Article  Google Scholar 

  156. Vavouliotis A, Paipetis A, Kostopoulos V (2011) On the fatigue life prediction of CFRP laminates using the electrical resistance change method. Compos Sci Technol 71(5):630–642. https://doi.org/10.1016/j.compscitech.2011.01.003

    Article  Google Scholar 

  157. Connor MT, Roy S, Ezquerra TA, Calleja FJB (1998) Broadband AC conductivity of conductor-polymer composites. Phys Rev B 57(4):2286–2295

    Article  Google Scholar 

  158. Kalamkarov AL, MacDonald DO, Fitzgerald SB, Georgiades AV (2000) Reliability assessment of pultruded FRP reinforcements with embedded fiber optic sensors. Compos Struct 50(1):69–78. https://doi.org/10.1016/S0263-8223(00)00081-7

    Article  Google Scholar 

  159. K-t Lau, Yuan L, Zhou L-m WuJ, C-h Woo (2001) Strain monitoring in FRP laminates and concrete beams using FBG sensors. Compos Struct 51(1):9–20. https://doi.org/10.1016/S0263-8223(00)00094-5

    Article  Google Scholar 

  160. McKenzie I, Jones R, Marshall IH, Galea S (2000) Optical fibre sensors for health monitoring of bonded repair systems. Compos Struct 50(4):405–416. https://doi.org/10.1016/S0263-8223(00)00107-0

    Article  Google Scholar 

  161. Barton EN, Ogin SL, Thorne AM, Reed GT, Le Page BH (2001) Interaction between optical fibre sensors and matrix cracks in cross-ply GRP laminates Part 1: passive optical fibres. Compos Sci Technol 61(13):1863–1869. https://doi.org/10.1016/S0266-3538(01)00086-0

    Article  Google Scholar 

  162. Gu X, Chen Z, Ansari F (1999) Method and theory for a multi-gauge distributed fiber optic crack sensor. J Intell Mater Syst Struct 10(4):266–273

    Article  Google Scholar 

  163. Zhao Y, Ansari F (2002) Embedded fiber optic sensor for characterization of interface strains in FRP composite. Sens Actuators A Phys 100(2):247–251

    Article  Google Scholar 

  164. Moulin E, Assaad J, Delebarre C, Kaczmarek H, Balageas D (1997) Piezoelectric transducer embedded in a composite plate: application to Lamb wave generation. J Appl Phys 82(5):2049–2055

    Article  Google Scholar 

  165. Kunadt A, Pfeifer G, Fischer W-J (2013) Ultrasound flow sensor based on arrays of piezoelectric transducers integrated in a composite. Procedia Mater Sci 2:160–165. https://doi.org/10.1016/j.mspro.2013.02.019

    Article  Google Scholar 

  166. Tamiatto C, Krawczak P, Pabiot J, Laurent F (1998) Integrated sensors for in-service health monitoring of glass/resin composites. J Adv Mater 30(3):32–37

    Google Scholar 

  167. Tamiatto C, Krawczak P, Pabiot J, Laurent F (2000) Smart composites applied to continuous in-service damage monitoring of glass/polymer industrial parts. SME Technical Paper:IQ 00-244

  168. Cheng J, Ji H, Qiu J, Takagi T, Uchimoto T, Hu N (2014) Role of interlaminar interface on bulk conductivity and electrical anisotropy of CFRP laminates measured by eddy current method. NDT and E Int 68:1–12. https://doi.org/10.1016/j.ndteint.2014.07.001

    Article  Google Scholar 

  169. Gros X, Ogi K, Takahashi K (1998) Eddy current, ultrasonic C-scan and scanning acoustic microscopy testing of delaminated quasi-isotropic CFRP materials: a case study. J Reinf Plast Compos 17(5):389–405

    Article  Google Scholar 

  170. Mizukami K, Mizutani Y, Kimura K, Sato A, Todoroki A, Suzuki Y, Nakamura Y (2016) Visualization and size estimation of fiber waviness in multidirectional CFRP laminates using eddy current imaging. Compos Part A Appl Sci Manuf 90:261–270. https://doi.org/10.1016/j.compositesa.2016.07.008

    Article  Google Scholar 

  171. Bardl G, Nocke A, Cherif C, Pooch M, Schulze M, Heuer H, Schiller M, Kupke R, Klein M (2016) Automated detection of yarn orientation in 3D-draped carbon fiber fabrics and preforms from eddy current data. Compos Part B Eng 96:312–324. https://doi.org/10.1016/j.compositesb.2016.04.040

    Article  Google Scholar 

  172. Bouloudenine A, Feliachi M, Latreche MEH (2017) Development of circular arrayed eddy current sensor for detecting fibers orientation and in-plane fiber waviness in unidirectional CFRP. NDT and E Int 92(Supplement C):30–37. https://doi.org/10.1016/j.ndteint.2017.07.011

    Article  Google Scholar 

  173. Berger D, Egloff A, Summa J, Schwarz M, Lanza G, Herrmann H-G (2017) Conception of an eddy current in-process quality control for the production of carbon fibre reinforced components in the rtm process chain. Procedia CIRP 62:39–44. https://doi.org/10.1016/j.procir.2016.06.011

    Article  Google Scholar 

  174. De Goeje MP, Wapenaar KED (1992) Non-destructive inspection of carbon fibre-reinforced plastics using eddy current methods. Composites 23(3):147–157. https://doi.org/10.1016/0010-4361(92)90435-W

    Article  Google Scholar 

  175. Mizukami K, Mizutani Y, Todoroki A, Suzuki Y (2015) Design of eddy current-based dielectric constant meter for defect detection in glass fiber reinforced plastics. NDT and E Int 74:24–32. https://doi.org/10.1016/j.ndteint.2015.04.005

    Article  Google Scholar 

  176. Mizukami K, Mizutani Y, Todoroki A, Suzuki Y (2015) Detection of delamination in thermoplastic CFRP welded zones using induction heating assisted eddy current testing. NDT and E Int 74:106–111. https://doi.org/10.1016/j.ndteint.2015.05.009

    Article  Google Scholar 

  177. Nováková L, Boháčová M, Homola P (2015) Application of material analysis and eddy current conductivity tests to aircraft accident investigation. Eng Fail Anal 56:422–428. https://doi.org/10.1016/j.engfailanal.2014.12.011

    Article  Google Scholar 

  178. Peng J, Tian GY, Wang L, Zhang Y, Li K, Gao X (2015) Investigation into eddy current pulsed thermography for rolling contact fatigue detection and characterization. NDT and E Int 74:72–80. https://doi.org/10.1016/j.ndteint.2015.05.006

    Article  Google Scholar 

  179. He Y, Tian G, Pan M, Chen D (2014) Impact evaluation in carbon fiber reinforced plastic (CFRP) laminates using eddy current pulsed thermography. Compos Struct 109:1–7. https://doi.org/10.1016/j.compstruct.2013.10.049

    Article  Google Scholar 

  180. Gros X, Bousigue J, Takahashi K (1999) NDT data fusion at pixel level. NDT and E Int 32(5):283–292

    Article  Google Scholar 

  181. Mayr G, Plank B, Sekelja J, Hendorfer G (2011) Active thermography as a quantitative method for non-destructive evaluation of porous carbon fiber reinforced polymers. NDT and E Int 44(7):537–543

    Article  Google Scholar 

  182. Munoz V, Valès B, Perrin M, Pastor ML, Welemane H, Cantarel A, Karama M (2016) Damage detection in CFRP by coupling acoustic emission and infrared thermography. Compos Part B Eng 85:68–75. https://doi.org/10.1016/j.compositesb.2015.09.011

    Article  Google Scholar 

  183. Chaki S, Harizi W, Bourse G, Ourak M (2015) Multi-technique approach for non destructive diagnostic of structural composite materials using bulk ultrasonic waves, guided waves, acoustic emission and infrared thermography. Compos Part A Appl Sci Manuf 78:358–361. https://doi.org/10.1016/j.compositesa.2015.08.033

    Article  Google Scholar 

  184. Chaki S, Harizi W, Krawczak P, Bourse G, Ourak M (2016) Structural health of polymer composite: non destructive diagnosis using a hybrid NDT approach. JEC Compos Mag 107:25–28

    Google Scholar 

  185. Cuadra J, Vanniamparambil PA, Hazeli K, Bartoli I, Kontsos A (2013) Damage quantification in polymer composites using a hybrid NDT approach. Compos Sci Technol 83:11–21

    Article  Google Scholar 

  186. Harizi W (2012) Caractérisation de l’endommagement des composites à matrice polymère par une approche multi-technique non destructive. Mines Douai and Univ, Valenciennes

    Google Scholar 

  187. Dattoma V, Giancane S (2013) Evaluation of energy of fatigue damage into GFRC through digital image correlation and thermography. Compos Part B Eng 47:283–289. https://doi.org/10.1016/j.compositesb.2012.10.030

    Article  Google Scholar 

  188. Goidescu C, Welemane H, Garnier C, Fazzini M, Brault R, Péronnet E, Mistou S (2013) Damage investigation in CFRP composites using full-field measurement techniques: Combination of digital image stereo-correlation, infrared thermography and X-ray tomography. Compos Part B Eng 48:95–105. https://doi.org/10.1016/j.compositesb.2012.11.016

    Article  Google Scholar 

Download references

Acknowledgements

Thanks are due to Direction Générale de l’Armement (DGA) for co-funding Pierre DUCHENE’s PhD grant and to Dr Benedicte LEVASSEUR, DGA advisor. The authors also acknowledge the European Union (European Regional Development Fund FEDER), the French state and the Hauts-de-France Region council for co-funding the ELSAT 2020 by CISIT project (POPCOM action).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salim Chaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duchene, P., Chaki, S., Ayadi, A. et al. A review of non-destructive techniques used for mechanical damage assessment in polymer composites. J Mater Sci 53, 7915–7938 (2018). https://doi.org/10.1007/s10853-018-2045-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2045-6

Keywords

Navigation