Journal of Materials Science

, Volume 53, Issue 9, pp 6980–6990 | Cite as

Shear localization and size-dependent strength of YCd6 quasicrystal approximant at the micrometer length scale

  • Gyuho Song
  • Tai Kong
  • Keith J. Dusoe
  • Paul C. Canfield
  • Seok-Woo Lee


Mechanical properties of materials are strongly dependent of their atomic arrangement as well as the sample dimension, particularly at the micrometer length scale. In this study, we investigated the small-scale mechanical properties of single-crystalline YCd6, which is a rational approximant of the icosahedral Y-Cd quasicrystal. In situ microcompression tests revealed that shear localization always occurs on {101} planes, but the shear direction is not constrained to any particular crystallographic directions. Furthermore, the yield strengths show the size dependence with a power law exponent of 0.4. Shear localization on {101} planes and size-dependent yield strength are explained in terms of a large interplanar spacing between {101} planes and the energetics of shear localization process, respectively. The mechanical behavior of the icosahedral Y-Cd quasicrystal is also compared to understand the influence of translational symmetry on the shear localization process in both YCd6 and Y-Cd quasicrystal micropillars. The results of this study will provide an important insight in a fundamental understanding of shear localization process in novel complex intermetallic compounds.



The authors gratefully acknowledge the financial support of UConn Start-Up Grant. FIB works were performed using the facilities in the UConn/FEI Center for Advanced Microscopy and Materials Analysis (CAMMA). Work by P.C. Canfield and T. Kong was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. Their research was performed at the Ames Laboratory. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358.


  1. 1.
    Gschneidner K, Russell A, Pecharsky A, Morris J, Zhang Z, Lograsso T, Hsu D, Lo CC, Ye Y, Slager A (2003) A family of ductile intermetallic compounds. Nat Mater 2(9):587–591CrossRefGoogle Scholar
  2. 2.
    Russell AM (2003) Ductility in intermetallic compounds. Adv Eng Mater 5(9):629–639CrossRefGoogle Scholar
  3. 3.
    Inoue A, Kimura H, Masumoto T (1987) Formation of AI-Cr-Si quasicrystal with high silicon concentration by rapid quenching and its thermal and electrical properties. J Mater Sci 22(5):1864–1868. CrossRefGoogle Scholar
  4. 4.
    Bolmaro R, Povolo F (1989) Elastic and anelastic behaviour of icosahedral quasicrystals. J Mater Sci 24(8):2975–2980. CrossRefGoogle Scholar
  5. 5.
    Wolf B, Swain M, Kempf M, Paufler P (2000) A comparison of indentations of different size and geometry in single-quasicrystalline AIPdMn. J Mater Sci 35(3):723–734. CrossRefGoogle Scholar
  6. 6.
    Bandyopadhyay P, Kern P, Siegmann S (2004) Corrosion behavior of vacuum plasma sprayed Ti-Zr-Ni quasicrystal coatings. J Mater Sci 39(19):6101–6104. CrossRefGoogle Scholar
  7. 7.
    Tanabe T, Kameoka S, Tsai AP (2011) Evolution of microstructure induced by calcination in leached Al–Cu–Fe quasicrystal and its effects on catalytic activity. J Mater Sci 46(7):2242–2250. CrossRefGoogle Scholar
  8. 8.
    Meyers MA, Chawla KK (2009) Mechanical behavior of materials, vol 2. Cambridge University Press, CambridgeGoogle Scholar
  9. 9.
    Nix WD, Greer JR, Feng G, Lilleodden ET (2007) Deformation at the nanometer and micrometer length scales: effects of strain gradients and dislocation starvation. Thin Solid Films 515(6):3152–3157CrossRefGoogle Scholar
  10. 10.
    Budiman A, Han S, Greer J, Tamura N, Patel J, Nix W (2008) A search for evidence of strain gradient hardening in Au submicron pillars under uniaxial compression using synchrotron X-ray microdiffraction. Acta Mater 56(3):602–608CrossRefGoogle Scholar
  11. 11.
    Lee S-W, Han SM, Nix WD (2009) Uniaxial compression of fcc Au nanopillars on an MgO substrate: the effects of prestraining and annealing. Acta Mater 57(15):4404–4415CrossRefGoogle Scholar
  12. 12.
    Cui Y, Po G, Ghoniem N (2016) Temperature insensitivity of the flow stress in body-centered cubic micropillar crystals. Acta Mater 108:128–137CrossRefGoogle Scholar
  13. 13.
    Kiener D, Minor A (2011) Source truncation and exhaustion: insights from quantitative in situ TEM tensile testing. Nano Lett 11(9):3816–3820CrossRefGoogle Scholar
  14. 14.
    Wang S, Yang Y, Zhou L, Mai Y-W (2012) Size effect in microcompression of epoxy micropillars. J Mater Sci 47(16):6047–6055. CrossRefGoogle Scholar
  15. 15.
    Yang Y, Liu CT (2012) Size effect on stability of shear-band propagation in bulk metallic glasses: an overview. J Mater Sci 47(1):55–67. CrossRefGoogle Scholar
  16. 16.
    Yu J, Wu J, Yu L, Yang H, Kao C (2017) Micromechanical behavior of single-crystalline Cu6Sn5 by picoindentation. J Mater Sci 52(12):7166–7174. CrossRefGoogle Scholar
  17. 17.
    Huskins EL, Cordero ZC, Schuh CA, Schuster BE (2015) Micropillar compression testing of powders. J Mater Sci 50(21):7058–7063. CrossRefGoogle Scholar
  18. 18.
    Michler J, Wasmer K, Meier S, Östlund F, Leifer K (2007) Plastic deformation of gallium arsenide micropillars under uniaxial compression at room temperature. Appl Phys Lett 90(4):3123CrossRefGoogle Scholar
  19. 19.
    Östlund F, Rzepiejewska-Malyska K, Leifer K, Hale LM, Tang Y, Ballarini R, Gerberich WW, Michler J (2009) Brittle-to-ductile transition in uniaxial compression of silicon pillars at room temperature. Adv Funct Mater 19(15):2439–2444CrossRefGoogle Scholar
  20. 20.
    Zou Y, Kuczera P, Sologubenko A, Sumigawa T, Kitamura T, Steurer W, Spolenak R (2016) Superior room-temperature ductility of typically brittle quasicrystals at small sizes. Nat Commun 7:12261. CrossRefGoogle Scholar
  21. 21.
    Jang D, Greer JR (2010) Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nat Mater 9(3):215–219CrossRefGoogle Scholar
  22. 22.
    Goldman AI, Kong T, Kreyssig A, Jesche A, Ramazanoglu M, Dennis KW, Bud’ko SL, Canfield PC (2013) A family of binary magnetic icosahedral quasicrystals based on rare earths and cadmium. Nat Mate 12(8):714–718CrossRefGoogle Scholar
  23. 23.
    Canfield PC, Fisk Z (1992) Growth of single crystals from metallic fluxes. Philos Mag B 65(6):1117–1123CrossRefGoogle Scholar
  24. 24.
    Canfield PC, Kong T, Kaluarachchi US, Jo NH (2016) Use of frit-disc crucibles for routine and exploratory solution growth of single crystalline samples. Philos Mag 96(1):84–92CrossRefGoogle Scholar
  25. 25.
    Nishimoto K, Sato T, Tamura R (2013) Low-temperature superstructures of a series of Cd6 M (M = Ca, Y, Sr, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) crystalline approximants. J Phys: Condens Matter 25(23):235403Google Scholar
  26. 26.
    Flores K, Dauskardt R (2001) Mean stress effects on flow localization and failure in a bulk metallic glass. Acta Mater 49(13):2527–2537CrossRefGoogle Scholar
  27. 27.
    Ogata S, Shimizu F, Li J, Wakeda M, Shibutani Y (2006) Atomistic simulation of shear localization in Cu–Zr bulk metallic glass. Intermetallics 14(8):1033–1037CrossRefGoogle Scholar
  28. 28.
    Bharathula A, Lee S-W, Wright WJ, Flores KM (2010) Compression testing of metallic glass at small length scales: effects on deformation mode and stability. Acta Mater 58(17):5789–5796CrossRefGoogle Scholar
  29. 29.
    Howie PR, Korte S, Clegg WJ (2012) Fracture modes in micropillar compression of brittle crystals. J Mater Res 27(1):141–151CrossRefGoogle Scholar
  30. 30.
    Kraft O, Volkert C (2006) Size effects on deformation and fatigue of thin films and small structures. Cambridge University, CambridgeGoogle Scholar
  31. 31.
    Schneider A, Kaufmann D, Clark B, Frick C, Gruber P, Mönig R, Kraft O, Arzt E (2009) Correlation between critical temperature and strength of small-scale bcc pillars. Phys Rev Lett 103(10):105501CrossRefGoogle Scholar
  32. 32.
    Uchic MD, Shade PA, Dimiduk DM (2009) Plasticity of micrometer-scale single crystals in compression. Ann Rev Mater Res 39:361–386CrossRefGoogle Scholar
  33. 33.
    Han SM, Bozorg-Grayeli T, Groves JR, Nix WD (2010) Size effects on strength and plasticity of vanadium nanopillars. Scr Mater 63(12):1153–1156CrossRefGoogle Scholar
  34. 34.
    Lee S-W, Nix WD (2012) Size dependence of the yield strength of fcc and bcc metallic micropillars with diameters of a few micrometers. Philos Mag 92(10):1238–1260CrossRefGoogle Scholar
  35. 35.
    Parthasarathy TA, Rao SI, Dimiduk DM, Uchic MD, Trinkle DR (2007) Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples. Scr Mater 56(4):313–316. CrossRefGoogle Scholar
  36. 36.
    Ng KS, Ngan AHW (2008) Breakdown of Schmid’s law in micropillars. Scr Mater 59(7):796–799. CrossRefGoogle Scholar
  37. 37.
    Volkert CA, Donohue A, Spaepen F (2008) Effect of sample size on deformation in amorphous metals. J Appl Phys 103(8):083539. CrossRefGoogle Scholar
  38. 38.
    Wang CC, Ding J, Cheng YQ, Wan JC, Tian L, Sun J, Shan ZW, Li J, Ma E (2012) Sample size matters for Al88Fe7Gd5 metallic glass: smaller is stronger. Acta Mater 60(13–14):5370–5379. CrossRefGoogle Scholar
  39. 39.
    Magagnosc D, Ehrbar R, Kumar G, He M, Schroers J, Gianola D (2013) Tunable tensile ductility in metallic glasses. Sci Rep 3:1096CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering and Institute of Materials ScienceUniversity of ConnecticutStorrsUSA
  2. 2.Ames Laboratory, U.S. DOE and Department of Physics and AstronomyIowa State UniversityAmesUSA

Personalised recommendations