Journal of Materials Science

, Volume 53, Issue 9, pp 6613–6625 | Cite as

Thermally stable and strong bulk Mg–MgO in situ nanocomposites by reactive cryomilling and high-pressure consolidation

  • Xuecheng Cai
  • Shengwei Xin
  • Baoru Sun
  • Hongwei Cui
  • Hui Yu
  • Qiuming Peng
  • Tongde Shen
Composites
  • 40 Downloads

Abstract

Nanoparticles have great potentials to improve the strength of metal matrix composites, but unfortunately, they tend to grow at high temperatures and are difficult to disperse uniformly with a high content, limiting the improvement in thermal stability and mechanical properties. Here we show the synthesis and performance of Mg–MgO in situ nanocomposites with a fraction of up to 40 vol% MgO nanoparticles. Our synthetic strategies include reactively cryomilling Mg with oxygen and subsequently consolidating the cryomilled powders under a high pressure of 6 GPa. Dispersed MgO nanoparticles with a fine particle size of 7.8 ± 1.7 nm are mainly situated at grain boundaries and exhibit a strong interfacial bonding with Mg matrix. Because of the strong Zener pinning effect of in situ formed MgO nanoparticles, the thermal stability is largely enhanced from ~ 100 °C for nanocrystalline Mg to 400 °C for Mg–10vol%MgO. The high thermal stability of Mg–MgO enables us to consolidate the cryomilled powders at a high temperature of 500 °C under a pressure of 6 GPa and achieve bulk Mg–MgO nanocomposites with a high compressive yield strength: 562 and 688 MPa for Mg–10vol%MgO and Mg–20vol%MgO, respectively. Meanwhile, the room-temperature hardness of the Mg–MgO nanocomposites increases linearly with the content of MgO nanoparticles and reaches 3.65 GPa for Mg–40vol%MgO. Furthermore, the MgO nanoparticles significantly improve the high-temperature hardness of nanocrystalline Mg.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Number 11575154) and the High-Level Talents Research Program of the Yanshan University (Grant Number 005000201).

References

  1. 1.
    Kim CS, Sohn I, Nezafati M et al (2013) Prediction models for the yield strength of particle-reinforced unimodal pure magnesium (Mg) metal matrix nanocomposites (MMNCs). J Mater Sci 48:4191–4204.  https://doi.org/10.1007/s10853-013-7232-x CrossRefGoogle Scholar
  2. 2.
    Shen MJ, Wang XJ, Li CD et al (2014) Effect of submicron size SiC particles on microstructure and mechanical properties of AZ31B magnesium matrix composites. Mater Des 54:436–442CrossRefGoogle Scholar
  3. 3.
    Nie KB, Deng KK, Xu FJ, Wang XJ, Wu K (2015) Development of microstructure in submicron particles reinforced magnesium matrix composite processed by room temperature deformation. Mater Chem Phys 149:21–26CrossRefGoogle Scholar
  4. 4.
    Wang XJ, Wang NZ, Wang LY et al (2014) Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing. Mater Des 57:638–645CrossRefGoogle Scholar
  5. 5.
    Chen LY, Xu JQ, Choi H et al (2015) Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature 528:539–543CrossRefGoogle Scholar
  6. 6.
    Ma X, Zhao YF, Tian WJ et al (2016) A novel Al matrix composite reinforced by nano-AlNp network. Sci Rep 6:34919–34927CrossRefGoogle Scholar
  7. 7.
    Kim CS, Cho K, Manjili MH, Nezafati M (2017) Mechanical performance of particulate-reinforced Al metal-matrix composites (MMCs) and Al metal-matrix nano-composites (MMNCs). J Mater Sci 52:13319–13349.  https://doi.org/10.1007/s10853-017-1378-x CrossRefGoogle Scholar
  8. 8.
    Bagherpour E, Reihanian M, Miyamoto H (2017) Tailoring particle distribution non-uniformity and grain refinement in nanostructured metal matrix composites fabricated by severe plastic deformation (SPD): a correlation with flow stress. J Mater Sci 52:3436–3446.  https://doi.org/10.1007/s10853-016-0632-y CrossRefGoogle Scholar
  9. 9.
    Goh CS, Gupta M, Wei J, Lee LC (2007) Characterization of high performance Mg/MgO nanocomposites. J Compos Mater 41:2325–2335CrossRefGoogle Scholar
  10. 10.
    Tjong SC (2007) Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties. Adv Eng Mater 9:639–652CrossRefGoogle Scholar
  11. 11.
    Ferguson JB, Sheykh-Jaberi F, Kim CS, Rohatgi PK, Cho K (2012) On the strength and strain to failure in particle-reinforced magnesium metal-matrix nanocomposites (Mg MMNCs). Mater Sci Eng A 558:193–204CrossRefGoogle Scholar
  12. 12.
    Chen LY, Konishi H, Fehrenbacher A et al (2012) Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scr Mater 67:29–32CrossRefGoogle Scholar
  13. 13.
    Tan XH, Chee WKH, Chan JKW, Kwok RWO, Gupta M (2016) Stretching the engineering strain of high strength LPSO quaternary Mg–Y–Zn–Al alloy via integration of nano-Al2O3. J Mater Sci 51:4160–4168.  https://doi.org/10.1007/s10853-016-9742-9 CrossRefGoogle Scholar
  14. 14.
    Donnadieu P, Benrhaiem S, Tassin C, Volpi F, Blandin JJ (2017) Preparation, microstructure and properties of magnesium-γMg17Al12 complex metallic alloy in situ composites. J Alloys Compd 702:626–635CrossRefGoogle Scholar
  15. 15.
    Ghasali E, Alizadeh M, Niazmand M, Ebadzadeh T (2017) Fabrication of magnesium-boron carbide metal matrix composite by powder metallurgy route: comparison between microwave and spark plasma sintering. J Alloys Compd 697:200–207.  https://doi.org/10.1016/j.jallcom.2016.12.146 CrossRefGoogle Scholar
  16. 16.
    Paramsothy M, Gupta M (2013) ZrB2 nanoparticle induced nano-LPSO-grain and nano-LPSO-layer reinforced ultra-high strength Mg–RE alloy. J Mater Sci 48:8368–8376.  https://doi.org/10.1007/s10853-013-7647-4 CrossRefGoogle Scholar
  17. 17.
    Song K, Zhang J, Liu L (2014) An Al2O3/Y3Al5O12 eutectic nanocomposite rapidly solidified by a new method: liquid–metal quenching. Scr Mater 92:39–42CrossRefGoogle Scholar
  18. 18.
    Chen J, Bao CG, Ma YN, Chen ZH (2017) Distribution control of AlN particles in Mg–Al/AlN composites. J Alloys Compd 695:162–170CrossRefGoogle Scholar
  19. 19.
    Cai XC, Song J, Yang TT, Peng QM, Huang JY, Shen TD (2018) A bulk nanocrystalline Mg–Ti alloy with high thermal stability and strength. Mater Lett 210:121–123CrossRefGoogle Scholar
  20. 20.
    Lü L, Lai MO, Liang W (2004) Magnesium nanocomposite via mechanochemical milling. Compos Sci Technol 64:2009–2014CrossRefGoogle Scholar
  21. 21.
    Lü L, Lai MO, Toh YH, Froyen L (2002) Structure and properties of Mg–Al–Ti–B alloys synthesized via mechanical alloying. Mater Sci Eng A 334:163–172CrossRefGoogle Scholar
  22. 22.
    Ferkel H, Mordike BL (2001) Magnesium strengthened by SiC nanoparticles. Mater Sci Eng A 298:193–199CrossRefGoogle Scholar
  23. 23.
    Garroni S, Delogu F, Minella CB, Pistidda C, Cuesta-Lopez S (2017) Mechanically activated metathesis reaction in NaNH2–MgH2 powder mixtures. J Mater Sci 52:11891–11899.  https://doi.org/10.1007/s10853-017-1220-5 CrossRefGoogle Scholar
  24. 24.
    Wang FL, Li YP, Wang XY, Koizumi Y, Kenta Y, Chiba A (2016) In-situ fabrication and characterization of ultrafine structured Cu–TiC composites with high strength and high conductivity by mechanical milling. J Alloys Compd 657:122–132CrossRefGoogle Scholar
  25. 25.
    Zhang F, Kaczmarek WA, Lü L, Lai MO (2000) Formation of titanium nitrides via wet reaction ball milling. J Alloys Compd 307:249–253CrossRefGoogle Scholar
  26. 26.
    Blázquez JS, Ipus JJ, Moreno-Ramírez LM et al (2017) Ball milling as a way to produce magnetic and magnetocaloric materials: a review. J Mater Sci 52:11834–11850.  https://doi.org/10.1007/s10853-017-1089-3 CrossRefGoogle Scholar
  27. 27.
    Hwang S, Nishimura C, McCormick P (2001) Compressive mechanical properties of Mg–Ti–C nanocomposite synthesised by mechanical milling. Scr Mater 44:2457–2462CrossRefGoogle Scholar
  28. 28.
    Tjong SC, Ma ZY (2000) Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng R 29:49–113CrossRefGoogle Scholar
  29. 29.
    Yang CL, Zhang B, Zhao DC et al (2017) In-situ synthesis of AlN/Mg–Al composites with high strength and high plasticity. J Alloys Compd 699:627–632CrossRefGoogle Scholar
  30. 30.
    Gangil N, Siddiquee AN, Maheshwari S (2017) Aluminium based in situ composite fabrication through friction stir processing: a review. J Alloys Compd 715:91–104CrossRefGoogle Scholar
  31. 31.
    Wang XM, Jha A, Brydson R (2004) In situ fabrication of Al3Ti particle reinforced aluminium alloy metal-matrix composites. Mater Sci Eng A 364:339–345CrossRefGoogle Scholar
  32. 32.
    Wang XM, Jha A, Brydson R, Ellis J (1999) Microstructural analysis of Al alloys dispersed with TiB2 particulate for MMC applications. J Microsc 196:137–145CrossRefGoogle Scholar
  33. 33.
    Chen C, Cui CX, Zhao LC, Liu SQ, Liu SJ (2016) The formation mechanism and interface structure characterization of in situ AlN/Al composites. J Compos Mater 50:495–506CrossRefGoogle Scholar
  34. 34.
    Glagea A, Ceccatob R, Lonardelli I et al (2009) A powder metallurgy approach for the production of a MgH2–Al composite material. J Alloys Compd 478:273–280CrossRefGoogle Scholar
  35. 35.
    Yang N, Yee JK, Zhang ZH et al (2015) Hydrogen sorption characteristics of nanostructured Pd–10Rh processed by cryomilling. Acta Meter 82:41–50CrossRefGoogle Scholar
  36. 36.
    Witkin DB, Lavernia EJ (2006) Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog Mater Sci 51:1–60CrossRefGoogle Scholar
  37. 37.
    Saller BD, Hu T, Ma K et al (2015) A comparative analysis of solubility, segregation, and phase formation in atomized and cryomilled Al-Fe alloy powders. J Mater Sci 50:4683–4697.  https://doi.org/10.1007/s10853-015-9019-8 CrossRefGoogle Scholar
  38. 38.
    Abdu MT, Dheda SS, Lavernia EJ et al (2013) Creep and microstructure in ultrafine-grained 5083 Al. J Mater Sci 48:3294–3303.  https://doi.org/10.1007/s10853-012-7115-6 CrossRefGoogle Scholar
  39. 39.
    Lavernia EJ, Han BQ, Schoenung JM (2008) Cryomilled nanostructured materials: processing and properties. Mater Sci Eng A 493:207–214CrossRefGoogle Scholar
  40. 40.
    Birringer R (1989) Nanocrystalline materials. Mater Sci Eng A 117:33–43CrossRefGoogle Scholar
  41. 41.
    Cao P, Lu L, Lai MO (2001) Grain growth and kinetics for nanocrystalline magnesium alloy produced by mechanical alloying. Mater Res Bull 36:981–988CrossRefGoogle Scholar
  42. 42.
    Thein MA, Lu L, Lai MO (2006) Kinetics of grain growth in nanocrystalline magnesium-based metal-metal composite synthesized by mechanical alloying. Compos Sci Technol 66:531–537CrossRefGoogle Scholar
  43. 43.
    Chen Z, Liu F, Wang HF et al (2009) A thermokinetic description for grain growth in nanocrystalline materials. Acta Mater 57:1466–1475CrossRefGoogle Scholar
  44. 44.
    Darling KA, Tschopp MA, VanLeeuwen BK, Atwater MA, Liu ZK (2014) Mitigating grain growth in binary nanocrystalline alloys through solute selection based on thermodynamic stability maps. Comput Mater Sci 84:255–266CrossRefGoogle Scholar
  45. 45.
    Chookajorn T, Murdoch HA, Schuh CA (2012) Design of stable nanocrystalline alloys. Science 337:951–954CrossRefGoogle Scholar
  46. 46.
    Darling KA, VanLeeuwen BK, Semones JE (2011) Stabilized nanocrystalline iron-based alloys: guiding efforts in alloy selection. Mater Sci Eng A 528:4365–4371CrossRefGoogle Scholar
  47. 47.
    Saber M, Kotan H, Koch CC, Scattergood RO (2013) A predictive model for thermodynamic stability of grain size in nanocrystalline ternary alloys. J Appl Phys 114(10):103510CrossRefGoogle Scholar
  48. 48.
    Kotan H, Darling KA, Saber M, Scattergood RO, Koch CC (2013) An in situ experimental study of grain growth in a nanocrystalline Fe91Ni8Zr1 alloy. J Mater Sci 48:2251–2257.  https://doi.org/10.1007/s10853-012-7002-1 CrossRefGoogle Scholar
  49. 49.
    Saber M, Kotan H, Koch CC, Scattergood RO (2012) Thermal stability of nanocrystalline Fe–Cr alloys with Zr additions. Mater Sci Eng A 556:664–670CrossRefGoogle Scholar
  50. 50.
    Koch CC, Scattergood RO, Saber M, Kotan H (2013) High temperature stabilization of nanocrystalline grain size: thermodynamic versus kinetic strategies. J Mater Sci 28:1785–1791.  https://doi.org/10.1557/jmr.2012.429 Google Scholar
  51. 51.
    Kotan H, Darling KA, Scattergood RO, Koch CC (2014) Influence of Zr and nano-Y2O3 additions on thermal stability and improved hardness in mechanically alloyed Fe base ferritic alloys. J Alloys Compd 615:1013–1018CrossRefGoogle Scholar
  52. 52.
    Boylan K, Ostrander D, Erb U, Palumbo G, Aust KT (1991) An in situ tem study of the thermal stability of nanocrystalline NiP. Scr Mater 25:2711–2716CrossRefGoogle Scholar
  53. 53.
    Darling KA, Rajagopalan M, Komarasamy M, Bhatia MA, Hornbuckle BC, Mishra RS, Solanki KN (2016) Extreme creep resistance in a microstructurally stable nanocrystalline alloy. Nature 537:378–381CrossRefGoogle Scholar
  54. 54.
    Krasnowski M, Kulik T (2007) Nanocrystalline FeAl matrix composites reinforced with TiC obtained by hot-pressing consolidation of mechanically alloyed powders. Intermetallics 15:1377–1383CrossRefGoogle Scholar
  55. 55.
    Krasnowski M, Kulik T (2010) Nanocrystalline Al–Fe intermetallics-light weight alloys with high hardness. Intermetallics 18:47–50CrossRefGoogle Scholar
  56. 56.
    Cai XC, Yang TT, Yu H, Sun BR, Peng QM, Shen TD (2017) A thermally stable and strong Mg–MgF2 nanocomposite. Mater Lett 209:476–478CrossRefGoogle Scholar
  57. 57.
    Shewmon PG (1963) Diffusion in solids. McGraw-Hill, New YorkGoogle Scholar
  58. 58.
    Yuan QH, Zeng XH, Liu Y (2016) Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO. Carbon 96:843–855CrossRefGoogle Scholar
  59. 59.
    Chaubey AK, Scudino S, Khoshkhoo MS (2014) High-strength ultrafine grain Mg–7.4%Al alloy synthesized by consolidation of mechanically alloyed powders. J Alloys Compd 610:456–461CrossRefGoogle Scholar
  60. 60.
    Ungár T, Révész Á, Borbély A (1998) Dislocations and grain size in electrodeposited nanocrystalline Ni determined by the modified Williamson–Hall and Warren–Averbach procedures. J Appl Cryst 31:554–558CrossRefGoogle Scholar
  61. 61.
    Seshan S, Jayamathy M, Kailas SV, Srivatsan TS (2003) The tensile behavior of two magnesium alloys reinforced with silicon carbide particulates. Mater Sci Eng A 363:345–351CrossRefGoogle Scholar
  62. 62.
    Lloyd DJ (1994) Particle reinforced aluminium and magnesium matrix composites. Int Mater Rev 39:1–23CrossRefGoogle Scholar
  63. 63.
    Humphreys FJ, Hatherly M (1996) Recrystallization and related annealing phenomena. Elsevier Science Inc, New YorkGoogle Scholar
  64. 64.
    Rawer JC, Krabbe RA, Wittenberger JD (1997) Hot-extrusion of attrition milled iron alloy powders. Scr Mater 37:2053–2059CrossRefGoogle Scholar
  65. 65.
    Hwang S, Nishimura C, McCormick PG (2001) Deformation mechanism of nanocrystalline magnesium in compression. Scr Mater 44:1507–1511CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringShangdong University of TechnologyZiboPeople’s Republic of China
  3. 3.School of Materials Science and EngineeringHebei University of TechnologyTianjinPeople’s Republic of China

Personalised recommendations