Journal of Materials Science

, Volume 53, Issue 9, pp 6325–6338 | Cite as

Antibiofouling thin-film composite membranes (TFC) by in situ formation of Cu-(m-phenylenediamine) oligomer complex

  • B. Rodríguez
  • D. Oztürk
  • M. Rosales
  • M. Flores
  • A. García


In situ formation of a Cu-(m-phenylenediamine) (Cu-mPD) oligomer complex from copper chloride during the interfacial polymerization process was successfully employed to produce modified thin-film composite reverse osmosis membranes (TFC-RO) with antibiofouling properties. Membranes were characterized by field emission scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), atomic force microscopy, and contact angle measurements. Antibiofouling properties were studied using a colony-forming unit test with Escherichia coli. Moreover, an antiadhesion test was developed using fluorescence microscopy. Membrane performance using a cross-flow cell was evaluated, and copper concentration in permeate water was measured. FTIR, XPS and XRD results confirmed the formation of a Cu-mPD oligomer complex and its incorporation into the polyamide layer. A mechanism for formation of the oligomer within the membrane was proposed based on the interaction between the oxygen of the carbonyl group of the polyamide layer and copper ion of the Cu-mPD oligomer complex. The modified membrane showed a slight decrease in hydrophilicity and higher surface roughness. However, excellent antibacterial and antiadhesion effects were observed, attributed to copper toxicity as a result of Cu2+ ions release from the membrane surface. Release of copper ions in the permeate water was determined, and the maximum value observed was considered negligible according to the World Health Organization. The desalination performance of modified membrane showed an important salt rejection with stable water flux. In conclusion, a novel chemical method for the incorporation of Cu-mPD oligomer complex into the polyamide layer of TFC-RO membranes to improve their antibiofouling properties and desalination performance was achieved.



The authors gratefully acknowledge financial support provided by National Fund for Scientific and Technological Development (FONDECYT) of the Government of Chile (Project No. 11130251). The authors thank Solvay Advanced Polymers for donating the polysulfone Udel P-1700. The authors also thank to the Water Quality Laboratory of the Department of Civil Engineering of Universidad de Chile for giving the infrastructure and the technician Viviana Lorca for TOC measures made.


This study was funded by National Fund for Scientific and Technological Development (FONDECYT) of the Government of Chile (Grant No. 11130251).

Compliance with ethical standards

Conflict of interest

The authors declare that they have not conflict of interest.

Supplementary material

10853_2018_2039_MOESM1_ESM.doc (377 kb)
Supplementary material 1 (DOC 377 kb)


  1. 1.
    Kang GD, Cao YM (2012) Development of antifouling reverse osmosis membranes for water treatment: a review. Water Res 46:584–600CrossRefGoogle Scholar
  2. 2.
    Buonomenna MG (2013) Nano-enhanced reverse osmosis membranes. Desalination 314:73–88CrossRefGoogle Scholar
  3. 3.
    Subramani Arun, Jacangelo Joseph G (2015) Emerging desalination technologies for water treatment: a critical review. Water Res 75:164–187CrossRefGoogle Scholar
  4. 4.
    Gohil Jaydevsinh M, Ray Paramita (2017) A review on semi-aromatic polyamide TFC membranes prepared by interfacial polymerization: potential for water treatment and desalination. Sep Purif Technol 181:159–182CrossRefGoogle Scholar
  5. 5.
    Ghosh AK, Bindal RC, Prabhakar S, Tewari PK (2011) Composite polyamide reverse osmosis (RO) membranes—recent developments and future directions technology development. BARC Newsl 321:43–51Google Scholar
  6. 6.
    Jiang Shanxue, Li Yuening, Ladewig Bradley P (2017) A review of reverse osmosis membrane fouling and control strategies. Sci Total Environ 595:567–583CrossRefGoogle Scholar
  7. 7.
    Karkhanechi H, Razi F, Sawada I, Takagi R, Ohmukai Y, Matsuyam H (2013) Improvement of antibiofouling performance of a reverse osmosis membrane through biocide release and adhesion resistance. Sep Purif Technol 105:106–113CrossRefGoogle Scholar
  8. 8.
    Asatekin A, Mayes AM (2009) Oil industry wastewater treatment with fouling resistant membranes containing amphiphilic comb copolymers. Environ Sci Technol 43:4487–4492CrossRefGoogle Scholar
  9. 9.
    Ong CS, Goh PS, Lau WJ, Misdan N, Ismail AF (2016) Nanomaterials for biofouling and scaling mitigation of thin film composite membrane: a review. Desalination 393:2–15CrossRefGoogle Scholar
  10. 10.
    Kang GD, Cao YM (2012) Development of antifouling reverse osmosis membranes for water treatment: a review. Water Res 46:584–600CrossRefGoogle Scholar
  11. 11.
    Buonomenna MG (2013) Nano-enhanced reverse osmosis membranes. Desalination 314:73–88CrossRefGoogle Scholar
  12. 12.
    Guo-Rong Xu, Wang Jiao-Na, Li Cong-Ju (2013) Strategies for improving the performance of the polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes: surface modifications and nanoparticles incorporations. Desalination 328:83–100CrossRefGoogle Scholar
  13. 13.
    Lia Xin, Sotto Arcadio, Li Jiansheng, Van der Bruggen Bart (2017) Progress and perspectives for synthesis of sustainable antifouling composite membranes containing in situ generated nanoparticles. J Membr Sci 524:502–528CrossRefGoogle Scholar
  14. 14.
    Kango S, Kaliab S, Celli A, Njugunad J (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Prog Polym Sci 38:1232–1261CrossRefGoogle Scholar
  15. 15.
    Kim J, Van der Bruggen B (2010) The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ Pollut 158:2335–2349CrossRefGoogle Scholar
  16. 16.
    Goh PS, Ismail AF (2015) Review: Is interplay between nanomaterial and membrane technology the way forward for desalination? J Chem Technol Biotechnol 90:971–980CrossRefGoogle Scholar
  17. 17.
    Goh PS, Ismail AF, Hilal N (2016) N Nano-enabled membranes technology: sustainable and revolutionary solutions for membrane desalination? Desalination 380:100–104CrossRefGoogle Scholar
  18. 18.
    Karkhanechi H, Razi F, Sawada I, Takagi R, Ohmukai Y, Matsuyam H (2013) Improvement of antibiofouling performance of a reverse osmosis membrane through biocide release and adhesion resistance. Sep Purif Technol 105:106–113CrossRefGoogle Scholar
  19. 19.
    Ben-Sasson M, Zodrow K, Genggeng Q, Kang Y, Giannelis E, Elimelech M (2014) Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties. Environ Sci Technol 48:384–393CrossRefGoogle Scholar
  20. 20.
    Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23:690–718CrossRefGoogle Scholar
  21. 21.
    Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin P, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262CrossRefGoogle Scholar
  22. 22.
    Chapman JS (2003) Biocide resistance mechanisms. Int Biodeterior Biodegradation 51:133–138CrossRefGoogle Scholar
  23. 23.
    Bagchi B, Dey S, Bhandary S, Das S, Bhattacharya A, Basu R, Nandy P (2012) Antimicrobial efficacy and biocompatibility study of copper nanoparticle adsorbed mullite aggregates. Mater Sci Eng C32:1897–1905CrossRefGoogle Scholar
  24. 24.
    Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33:587–590CrossRefGoogle Scholar
  25. 25.
    Baek YW, An YJ (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409:1603–1608CrossRefGoogle Scholar
  26. 26.
    Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468CrossRefGoogle Scholar
  27. 27.
    Shaffiey SF, Bozorgnia A, Ahmad M (2014) Synthesis and evaluation of bactericidal properties of CuO nanoparticles against Aeromonas hydrophila. Nanomed J 1:98–204Google Scholar
  28. 28.
    García A, Quintero Y, Vicencio N, Rodríguez B, Ozturk D, Mosquera E, Corrales TP, Volkmannf Elimelech UG (2016) Influence of TiO2 nanostructures on anti-adhesion and photoinduced bactericidal properties of thin film composite membranes. RSC Adv 6:82941–82948CrossRefGoogle Scholar
  29. 29.
    Akar N, Asar B, Dizge N, Koyuncu I (2013) Investigation of characterization and biofouling properties of PES membrane containing selenium and copper nanoparticles. J Membr Sci 437:216–226CrossRefGoogle Scholar
  30. 30.
    Isloor A, Ganesh BM, Isloor S, Ismail AF, Nagaraj HS, Pattabi M (2013) Studies on copper coated polysulfone/modified poly isobutylene alt-maleic anhydride blend membrane and its antibiofouling property. Desalination 308:82–88CrossRefGoogle Scholar
  31. 31.
    Baghbanzadeh M, Rana D, Matsuura T, Lan C (2015) Effects of hydrophilic CuO nanoparticles on properties and performance of PVDF VMD membranes. Desalination 369:75–84CrossRefGoogle Scholar
  32. 32.
    Ben-Sasson M, Lu X, Nejati S, Jaramillo H, Elimelech M (2016) In situ surface functionalization of reverse osmosis membranes with biocidal copper nanoparticles. Desalination 38:1–8CrossRefGoogle Scholar
  33. 33.
    Hausman R, Gullinkala T, Escobar IC (2010) Development of copper-charged polypropylene feedspacers for biofouling control. J Membr Sci 35:114–121CrossRefGoogle Scholar
  34. 34.
    Hausman R, Gullinkala T, Escobar IC (2009) Development of low-biofouling polypropylene feedspacers for reverse osmosis. J Appl Polym Sci 114:3068–3073CrossRefGoogle Scholar
  35. 35.
    Xu J, Feng X, Chen P, Gao C (2012) Development of an antibacterial copper (II)-chelated polyacrylonitrile ultrafiltration membrane. J Membr Sci 413–414:62–69CrossRefGoogle Scholar
  36. 36.
    Asapu S, Pant S, Gruden CL, Escobar IC (2014) An investigation of low biofouling copper-charged membranes for desalination. Desalination 338:17–25CrossRefGoogle Scholar
  37. 37.
    Garcia A, Rodríguez B, Oztürk D, Rosales M, Paredes C, Cuadra F, Montserrat S (2016) Desalination performance of antibiofouling reverse osmosis membranes. Mod Environ Sci Eng 2:481–489CrossRefGoogle Scholar
  38. 38.
    García A, Rodríguez B, Oztürk D, Rosales M, Diaz DI, Mautner A (2017) Incorporation of CuO nanoparticles into thin-film composite reverse osmosis membranes (TFC-RO) for antibiofouling properties. Polym Bull 46:1–17Google Scholar
  39. 39.
    Zhang L, Wang H, Yu W, Su Z, Chai L, Li J, Shi Y (2012) Facile and large-scale synthesis of functional poly(m-phenylenediamine) nanoparticles by Cu2+-assisted method with superior ability for dye adsorption. J Mater Chem 22:18244–18251CrossRefGoogle Scholar
  40. 40.
    Da S, Peng B, Zhang L, Chai L, Wang T, Meng Y, Li X, Wang H, Luo J (2015) Sustainable synthesis of hollow Cu-loaded poly(m-phenylenediamine) particles and their application for arsenic removal. RSC Adv 5:29965–29974CrossRefGoogle Scholar
  41. 41.
    Chai L, Wang T, Zhang L, Wang H, Yang W, Dai S, Meng Y, Li X (2015) A Cu–m-phenylenediamine complex induced route to fabricate poly(m-phenylenediamine)/reduced graphene oxide hydrogel and its adsorption application. Carbon 81:748–757CrossRefGoogle Scholar
  42. 42.
    Rahimpour A, Madaeni SS, Taheri AH, Mansourpanah Y (2008) Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes. J Membr Sci 313:158–169CrossRefGoogle Scholar
  43. 43.
    Saleh TA, Gupta VK (2012) Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance. Sep Purif Technol 89:245–251CrossRefGoogle Scholar
  44. 44.
    Zhang M, Zhang K, De Gusseme B, Verstraete W (2012) Biogenic silver nanoparticles (bio-Ag 0) decrease biofouling of bio-Ag 0/PES nanocomposite membranes. Water Res 46(7):2077–2087CrossRefGoogle Scholar
  45. 45.
    Lee HS, Im SJ, Kim JH, Kim HJ, Kim JP, Min BR (2008) Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles. Desalination 219(1–3):48–56CrossRefGoogle Scholar
  46. 46.
    Tang CY, Kwon Y-N, Leckie JO (2009) Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: I. FTIR and XPS characterization of polyamide and coating layer chemistry. Desalination 242:149–167CrossRefGoogle Scholar
  47. 47.
    Akin O, Temelli F (2011) Probing the hydrophobicity of commercial reverse osmosis membranes produced by interfacial polymerization using contact angle, XPS, FTIR, FE-SEM and AFM. Desalination 278:387–396CrossRefGoogle Scholar
  48. 48.
    Robert FXW, Silverstein M, Kiemle D (2005) Spectrometric identification of organic compounds, 7th edn. Wiley, New YorkGoogle Scholar
  49. 49.
    Khorshidi B, Soltannia B, Thundat T, Sadrzadeh M (2017) Synthesis of thin film composite polyamide membranes: effect of monohydric and polyhydric alcohol additives in aqueous solution. J Membr Sci 523:336–345CrossRefGoogle Scholar
  50. 50.
    Hoof DL, Tisley DG, Walton RA (1973) Studies on metal carboxylates. Part III. Pyridine-2,6-dicarboxylates of the lanthanides. Synthesis and spectral studies and the X-ray photoelectron spectra of several pyridine carboxylate complexes. J Chem Soc, Dalton Trans 2:200–204CrossRefGoogle Scholar
  51. 51.
    Zhang LY, Chai LY, Liu J, Wang HY, Yu WT, Sang PL (2011) pH manipulation: a facile method for lowering oxidation state and keeping good yield of poly (m-phenylenediamine) and its powerful Ag + adsorption ability. Langmuir 27:13729–13738CrossRefGoogle Scholar
  52. 52.
    Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE (1979) Handbook of X-ray photoelectron spectroscopy, vol 190. Perkin-Elmer Corporation, WalthamGoogle Scholar
  53. 53.
    Liu Zhirong Md, Uddin Azhar, Zhanxue Sun (2011) FT-IR and XRD analysis of natural Na-bentonite and Cu(II)-loaded Na-bentonite, Spectrochim. Acta Part A 79:1013–1016CrossRefGoogle Scholar
  54. 54.
    Porter MC (1991) Handbook of industrial membrane technology. Noyes Publications, Saddle RiverGoogle Scholar
  55. 55.
    Kwak SGJSY, Yoon YS, Ihm DW (1999) Details of surface features in aromatic polyamide reverse osmosis membranes characterized by scanning electron and atomic force microscopy. J Polym Sci, Part B: Polym Phys 37:1429–1440CrossRefGoogle Scholar
  56. 56.
    Jia Xu, Zhang Lili, Gao Xueli, Bie Haiyan, Yunpeng Fu, Gao Congjie (2015) Constructing antimicrobial membrane surfaces with polycation-copper (II) complex assembly for efficient seawater softening treatment. J Membr Sci 494:28–36Google Scholar
  57. 57.
    Lupsea Maria, Mathies Helena, Schoknecht Ute, Tiruta-Barna Ligia, Schiopu Nicoleta (2013) Biocide leaching from CBA treated wood—a mechanistic interpretation. Sci Total Environ 444:522–530CrossRefGoogle Scholar
  58. 58.
    Nadraroglu H, Kalkan E, Demir N (2010) Removal of copper from aqueous solution using red mud. Desalination 251:90–95CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Advanced Mining Technology Center (AMTC)Universidad de ChileSantiagoChile
  2. 2.Laboratory of Nanoscale Materials, Department of Materials ScienceUniversidad de ChileSantiagoChile
  3. 3.Physics Department, Faculty of Physics and Mathematics SciencesUniversidad de ChileSantiagoChile

Personalised recommendations