Journal of Materials Science

, Volume 53, Issue 9, pp 6482–6493 | Cite as

Facile preparation of Ag–Ag2S hetero-dendrites with high visible light photocatalytic activity

  • Shengchen Zhang
  • Wenjing Qin
  • Manman Liu
  • Xiaoxue Ren
  • Guomiao Hu
  • Chen Yuan
  • Liying Yang
  • Shougen Yin
Chemical routes to materials


A stable and highly efficient Ag–Ag2S hetero-dendrites (HDs) photocatalyst has been obtained via an extremely facile electrodeposition and subsequently in situ sulfuration route. The SEM and TEM show well-defined uniform dendrites morphology with an average diameter about 30 nm. In addition, the absorption spectra of Ag–Ag2S HDs exhibit strong absorption in both visible and NIR regions. The EIS indicates that the low charge transfer resistance of Ag–Ag2S HDs enhances the photocatalytic activity. The prepared HDs-4 photocatalyst with moderate degree of vulcanization shows excellent activity for degradation the methylene blue (MB) under the sunlight irradiation owing to the suitable ratios of Ag–Ag2S. The enhanced photocatalytic activity could be attributed to the favorable synergistic effects between Ag and Ag2S materials, such as huge extended absorption of solar light, low charge transfer resistance and high electron–hole separation efficiency. Moreover, radical scavenger experiments confirmed that superoxide radicals and holes were the main reactive species for MB degradation. Meanwhile, the Ag–Ag2S HDs displays good photocatalytic stability after being recycled five times.



This work was financially supported by the NSFC (51402214, 61504097), Tianjin Natural Science Foundation (17JCYBJC21000, 14JCYBJC42800) and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China.

Supplementary material

10853_2018_2032_MOESM1_ESM.docx (293 kb)
Supplementary material 1 (DOCX 292 kb)


  1. 1.
    Yaipimai W, Subjalearndee N, Tumcharern G, Intasanta V (2015) Multifunctional metal and metal oxide hybrid nanomaterials for solar light photocatalyst and antibacterial applications. J Mater Sci 50:7681–7697CrossRefGoogle Scholar
  2. 2.
    Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473CrossRefGoogle Scholar
  3. 3.
    Awazu K, Fujimake M, Rockstuhl C, Tominaga J, Murakami YH, Ohki NY, Watanabe T (2008) A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J Am Chem Soc 130:1676–1680CrossRefGoogle Scholar
  4. 4.
    Christopher P, Ingram DB, Linic S (2010) Enhancing photochemical activity of semiconductor nanoparticles with optically active Ag nanostructures photochemistry mediated by Ag surface plasmons. J Phys Chem C 114:9173–9177CrossRefGoogle Scholar
  5. 5.
    Solarska R, Krolikowska A, Augustynski J (2010) Silver nanoparticle induced photocurrent enhancement at WO3 photoanodes. Angew Chem Int Ed Engl 49:7980–7983CrossRefGoogle Scholar
  6. 6.
    Patsoura A, Kondarides DI, Verykios XE (2007) Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen. Catal Today 124:94–102CrossRefGoogle Scholar
  7. 7.
    Xiao FX, Miao J, Tao HB, Hung SF, Wang HY, Yang HB, Chen J, Chen R, Liu B (2015) One-dimensional hybrid nanostructures for heterogeneous photocatalysis and photoelectrocatalysis. Small 11:2115–2131CrossRefGoogle Scholar
  8. 8.
    Li Y, Chen G, Wang Q, Wang X, Zhou A, Shen Z (2010) Hierarchical ZnS–In2S3–CuS nanospheres with nanoporous structure: facile synthesis, growth mechanism, and excellent photocatalytic activity. Adv Funct Mater 20:3390–3398CrossRefGoogle Scholar
  9. 9.
    Wang L, Li R, Liu J, Han J, Huang M (2016) Synthesis of Au@CdS core–shell nanoparticles and their photocatalytic capacity researched by SERS. J Mater Sci 52:1847–1855CrossRefGoogle Scholar
  10. 10.
    Chava RK, Do JY, Kang M (2017) Fabrication of CdS–Ag3PO4 heteronanostructures for improved visible photocatalytic hydrogen evolution. J Alloy Compd 727:86–93CrossRefGoogle Scholar
  11. 11.
    Pourahmad A (2012) Ag2S nanoparticle encapsulated in mesoporous material nanoparticles and its application for photocatalytic degradation of dye in aqueous solution. Superlattices Microstruct 52:276–287CrossRefGoogle Scholar
  12. 12.
    Jiang W, Wu Z, Yue X, Yuan S, Lu H, Liang B (2015) Photocatalytic performance of Ag2S under irradiation with visible and near-infrared light and its mechanism of degradation. RSC Adv 5:24064–24071CrossRefGoogle Scholar
  13. 13.
    Yu C, Wei L, Zhou W, Dionysiou DD, Zhu L, Shu Q, Liu H (2016) A visible-light-driven core-shell like Ag2S@Ag2CO3 composite photocatalyst with high performance in pollutants degradation. Chemosphere 157:250–261CrossRefGoogle Scholar
  14. 14.
    Fan W, Jewell S, She Y, Leung MK (2014) In situ deposition of Ag–Ag2S hybrid nanoparticles onto TiO2 nanotube arrays towards fabrication of photoelectrodes with high visible light photoelectrochemical properties. Phys Chem Chem Phys 16:676–680CrossRefGoogle Scholar
  15. 15.
    Pang M, Hu J, Zeng HC (2010) Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers. J Am Chem Soc 132:10771–10785CrossRefGoogle Scholar
  16. 16.
    Zhu T, Zhang C, Ho GW (2015) In situ dissolution-diffusion toward homogeneous multiphase Ag/Ag2S@ZnS core-shell heterostructures for enhanced photocatalytic performance. J Phys Chem C 119:1667–1675CrossRefGoogle Scholar
  17. 17.
    Sadovnikov SI, Kozlova EA, Gerasimov EY, Rempel AA, Gusev AI (2017) Enhanced photocatalytic hydrogen evolution from aqueous solutions on Ag2S/Ag heteronanostructure. Int J Hydrogen Energy 42:25258–25266CrossRefGoogle Scholar
  18. 18.
    Sadovnikov SI, Kozlova EA, Gerasimov EY, Rempel AA (2017) Photocatalytic hydrogen evolution from aqueous solutions on nanostructured Ag2S and Ag2S/Ag. Catal Commun 100:178–182CrossRefGoogle Scholar
  19. 19.
    Kumar BG, Srinivas B, Prasad MD, Muralidharan K (2015) Ag/Ag2S heterodimers: tailoring the metal–semiconductor interface in a single nanoparticle. J Nanopart Res 17:325–335CrossRefGoogle Scholar
  20. 20.
    Jiang F, Tian Q, Tang M, Chen Z, Yang J, Hu J (2011) One-pot synthesis of large-scaled Janus Ag–Ag2S nanoparticles and their photocatalytic properties. CrystEngComm 13:7189–7193CrossRefGoogle Scholar
  21. 21.
    Yang W, Zhang L, Hu Y, Zhong Y, Wu HB, Lou XW (2012) Microwave-assisted synthesis of porous Ag2S–Ag hybrid nanotubes with high visible-light photocatalytic activity. Angew Chem Int Ed Engl 51:11501–11504CrossRefGoogle Scholar
  22. 22.
    Xiong J, Han C, Li W, Sun Q, Chen J, Chou S, Li Z, Dou S (2016) Ambient synthesis of a multifunctional 1D/2D hierarchical Ag–Ag2S nanowire/nanosheet heterostructure with diverse applications. CrystEngComm 18:930–937CrossRefGoogle Scholar
  23. 23.
    Basu M, Nazir R, Mahala C, Fageria P, Chaudhary S, Gangopadhyay S, Pande S (2017) Ag2S/Ag heterostructure: a promising electrocatalyst for the hydrogen evolution reaction. Langmuir 33:3178–3186CrossRefGoogle Scholar
  24. 24.
    Li Y, Ye X, Ma Y, Qi L (2015) Interfacial nanosphere lithography toward Ag2S–Ag heterostructured nanobowl arrays with effective resistance switching and enhanced photoresponses. Small 11:1183–1188CrossRefGoogle Scholar
  25. 25.
    Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA (2017) Heterojunction photocatalysts. Adv Mater 29:1601694CrossRefGoogle Scholar
  26. 26.
    Xing C, Zhang Y, Wu Z, Jiang D, Chen M (2014) Ion-exchange synthesis of Ag/Ag2S/Ag3CuS2 ternary hollow microspheres with efficient visible-light photocatalytic activity. Dalton Trans 43:2772–2780CrossRefGoogle Scholar
  27. 27.
    Shi Y, Chen Y, Tian G, Wang L, Xiao Y, Fu H (2015) Hierarchical Ag/Ag2S/CuS ternary heterostructure composite as an efficient visible-light photocatalyst. ChemCatChem 7:1684–1690CrossRefGoogle Scholar
  28. 28.
    Zhang D, Xu G, Chen F (2015) Hollow spheric Ag–Ag2S/TiO2 composite and its application for photocatalytic reduction of Cr(VI). Appl Surf Sci 351:962–968CrossRefGoogle Scholar
  29. 29.
    Wang Y, Tang Y, Chen Y, Li Y, Liu X, Luo S, Liu C (2013) Reduced graphene oxide-based photocatalysts containing Ag nanoparticles on a TiO2 nanotube array. J Mater Sci 48:6203–6211CrossRefGoogle Scholar
  30. 30.
    Endres F, Bukowski M, Hempelmann R, Natter H (2003) Electrodeposition of nanocrystalline metals and alloys from ionic liquids. Angew Chem Int Ed Engl 42:3428–3430CrossRefGoogle Scholar
  31. 31.
    Menke EJ, Thompson MA, Xiang C, Yang LC, Penner RM (2006) Lithographically patterned nanowire electrodeposition. Nat Mater 5:914–919CrossRefGoogle Scholar
  32. 32.
    Said RA (2003) Shape formation of microstructures fabricated by localized electrochemical deposition. J Electrochem Soc 150:C549–C557CrossRefGoogle Scholar
  33. 33.
    Sadovnikov SI, Gusev AI, Chukin AV, Rempel AA (2016) High-temperature X-ray diffraction and thermal expansion of nanocrystalline and coarse-crystalline acanthite alpha-Ag2S and argentite beta-Ag2S. Phys Chem Chem Phys 18:4617–4626CrossRefGoogle Scholar
  34. 34.
    Sadovnikov SI, Gusev AI, Rempel AA (2015) An in situ high-temperature scanning electron microscopy study of acanthite-argentite phase transformation in nanocrystalline silver sulfide powder. Phys Chem Chem Phys 17:20495–20501CrossRefGoogle Scholar
  35. 35.
    Liu Z, Ji G, Guan D, Wang B, Wu X (2015) Enhanced charge-carrier transfer by CdS and Ag2S quantum dots co-sensitization for TiO2 nanotube arrays. J Colloid Interface Sci 457:1–8CrossRefGoogle Scholar
  36. 36.
    Lei Y, Jia H, He W, Zhang Y, Mi L, Hou H, Zhu G, Zheng Z (2012) Hybrid solar cells with outstanding short-circuit currents based on a room temperature soft-chemical strategy: the case of P3HT:Ag2S. J Am Chem Soc 134:17392–17395CrossRefGoogle Scholar
  37. 37.
    Liu T, Liu B, Yang L, Ma X, Li H, Yin S, Sato T, Sekino T, Wang Y (2017) RGO/Ag2S/TiO2 ternary heterojunctions with highly enhanced UV-NIR photocatalytic activity and stability. Appl Catal B Environ 204:593–601CrossRefGoogle Scholar
  38. 38.
    Jafari Z, Mokhtarian N, Hosseinzadeh G, Farhadian M, Faghihi A, Shojaie F (2016) Ag/TiO2/freeze-dried graphene nanocomposite as a high performance photocatalyst under visible light irradiation. J Energy Chem 25:393–402CrossRefGoogle Scholar
  39. 39.
    Chen F, Wu Y, Ning J, Ren J, Zhang Z, Zheng C, Zhong Y, Hu Y (2017) Facile preparation of ternary Ag2CO3/Ag/PANI composite nanorods with enhanced photoactivity and stability. J Mater Sci 52:4521–4531CrossRefGoogle Scholar
  40. 40.
    Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann J-M (2001) Photocatalytic degradation pathway of methylene blue in water. Appl Catal B Environ 31:145–157CrossRefGoogle Scholar
  41. 41.
    Chou CH, Chen FC (2014) Plasmonic nanostructures for light trapping in organic photovoltaic devices. Nanoscale 6:8444–8458CrossRefGoogle Scholar
  42. 42.
    Kochuveedu ST, Jang YH, Kim DH (2013) A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Chem Soc Rev 42:8467–8493CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringTianjin University of TechnologyTianjinPeople’s Republic of China
  2. 2.Tianjin Key Laboratory for Photoelectric Materials and DevicesTianjin University of TechnologyTianjinPeople’s Republic of China

Personalised recommendations