Journal of Materials Science

, Volume 53, Issue 9, pp 6366–6377 | Cite as

Phase structure evolution and chemical durability studies of Gd1−xYb x PO4 ceramics for immobilization of minor actinides

  • Wenqi Li
  • Xingeng Ding
  • Cheng Meng
  • Chunrong Ren
  • Huating Wu
  • Hui Yang
Ceramics
  • 41 Downloads

Abstract

Rare earth phosphates (REPO4) are considered as promising materials to immobilize the high-level radioactive waste. In the paper, Gd1−xYb x PO4 (x = 0, 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0) series were prepared via the solid-state reaction using Gd as the surrogate for minor actinide Am and Cm, and the structure, phase transformation and morphology were characterized by XRD, Raman, TEM and SEM. With the calcination temperature ranging from 1200 to 1500 °C, the coexisted phases of monazite- and xenotime-type structure are observed in Gd0.9Yb0.1PO4. The monophasic xenotime-type Gd0.9Yb0.1PO4 is obtained at 1600 °C. The monazite → xenotime transformation of Gd1−xYb x PO4 depends on the substitution of Gd3+ by Yb3+ ions. With the decrease in Gd3+ content, the gradual changes of FWHM and the hypsochromic shift of P-O symmetrical stretching vibration (Vs) are observed in the Raman spectra, indicating that the distortion of PO4 tetrahedra occurs during the phase transformation process. The chemical durability test is measured by the ASTM product consistency test leaching method, and the normalized mass loss (NLGd) of Gd and (NLYb) of Yb is extremely low and shown in the order of 10−6–10−7 g/m2 for all the ceramics.

Notes

Acknowledgements

This project was supported by the National High-Tech Research and Development Program of China (863 Program) (No. 2015AA034701).

Supplementary material

10853_2018_2031_MOESM1_ESM.doc (3.2 mb)
Supplementary material 1 (DOC 3274 kb)

References

  1. 1.
    Donald IW, Metcalfe BL, Taylor RNJ (1997) The immobilization of high level radioactive wastes using ceramics and glasses. J Mater Sci 32:5851–5887.  https://doi.org/10.1023/A:1018646507438 CrossRefGoogle Scholar
  2. 2.
    Kaushik CP, Mishra RK, Sengupta P et al (2006) Barium borosilicate glass—a potential matrix for immobilization of sulfate bearing high-level radioactive liquid waste. J Nucl Mater 358:129–138.  https://doi.org/10.1016/j.jnucmat.2006.07.004 CrossRefGoogle Scholar
  3. 3.
    Ojovan MI, Lee WE (2010) Glassy wasteforms for nuclear waste immobilization. Metall Mater Trans A 42:837–851.  https://doi.org/10.1007/s11661-010-0525-7 CrossRefGoogle Scholar
  4. 4.
    Bregiroux D, Terra O, Audubert F et al (2007) Solid-state synthesis of monazite-type compounds containing tetravalent elements. Inorg Chem 46:10372–10382.  https://doi.org/10.1021/ic7012123 CrossRefGoogle Scholar
  5. 5.
    Campayo L, Audubert F, Lartigue J-E et al (2008) Study of a phosphate-based material with rhabdophane structure for caesium immobilization: synthesis, sintering and leaching behaviour. J Nucl Mater 374:101–108.  https://doi.org/10.1016/j.jnucmat.2007.07.019 CrossRefGoogle Scholar
  6. 6.
    Dacheux N, Thomas AC, Brandel V, Genet M (1998) Investigation of the system ThO2–NpO2–P2O5. Solid solutions of thorium–neptunium (IV) phosphate–diphosphate. J Nucl Mater 257:108–117.  https://doi.org/10.1016/S0022-3115(98)00443-7 CrossRefGoogle Scholar
  7. 7.
    Ma QY, Traina SJ, Logan TJ, Ryan JA (1993) In situ lead immobilization by apatite. Environ Sci Technol 27:1803–1810.  https://doi.org/10.1021/es00046a007 CrossRefGoogle Scholar
  8. 8.
    Terra O, Dacheux N, Audubert F, Podor R (2006) Immobilization of tetravalent actinides in phosphate ceramics. J Nucl Mater 352:224–232.  https://doi.org/10.1016/j.jnucmat.2006.02.058 CrossRefGoogle Scholar
  9. 9.
    Terra O, Clavier N, Dacheux N, Podor R (2003) Preparation and characterization of lanthanum–gadolinium monazites as ceramics for radioactive waste storage. New J Chem 27:957–967.  https://doi.org/10.1039/B212805P CrossRefGoogle Scholar
  10. 10.
    Asuvathraman R, Kutty KVG (2014) Thermal expansion behaviour of a versatile monazite phase with simulated HLW: a high temperature x-ray diffraction study. Thermochim Acta 581:54–61.  https://doi.org/10.1016/j.tca.2014.02.009 CrossRefGoogle Scholar
  11. 11.
    Kumar SP, Gopal B (2015) Simulated monazite crystalline wasteform La0.4Nd0.1Y0.1Gd0.1Sm0.1Ce0.1Ca0.1(P0.9Mo0.1O4): synthesis, phase stability and chemical durability study. J Nucl Mater 458:224–232.  https://doi.org/10.1016/j.jnucmat.2014.12.081 CrossRefGoogle Scholar
  12. 12.
    Sadri F, Nazari AM, Ghahreman A (2017) A review on the cracking, baking and leaching processes of rare earth element concentrates. J Rare Earths 35:739–752.  https://doi.org/10.1016/S1002-0721(17)60971-2 CrossRefGoogle Scholar
  13. 13.
    Get’man EI, Radio SV (2017) Mixing energies (interaction parameters) and decomposition temperatures in solid solutions of monazites of rare earth elements with structure La1–xLnxPO4. Inorg Mater 53:718–721.  https://doi.org/10.1134/S0020168517070044 CrossRefGoogle Scholar
  14. 14.
    Arinicheva Y, Bukaemskiy A, Neumeier S et al (2014) Studies on thermal and mechanical properties of monazite-type ceramics for the conditioning of minor actinides. Prog Nucl Energy 72:144–148.  https://doi.org/10.1016/j.pnucene.2013.09.004 CrossRefGoogle Scholar
  15. 15.
    Boatner LA (2002) Synthesis, structure, and properties of monazite, pretulite, and xenotime. Rev Mineral Geochem 48:87–121.  https://doi.org/10.2138/rmg.2002.48.4 CrossRefGoogle Scholar
  16. 16.
    Arinicheva Y, Popa K, Scheinost AC et al (2017) Structural investigations of (La, Pu)PO4 monazite solid solutions: XRD and XAFS study. J Nucl Mater 493:404–411.  https://doi.org/10.1016/j.jnucmat.2017.06.034 CrossRefGoogle Scholar
  17. 17.
    Qin D, Mesbah A, Gausse C et al (2017) Incorporation of thorium in the rhabdophane structure: synthesis and characterization of Pr1−2xCaxThxPO4·nH2O solid solutions. J Nucl Mater 492:88–96.  https://doi.org/10.1016/j.jnucmat.2017.05.019 CrossRefGoogle Scholar
  18. 18.
    Mesbah A, Clavier N, Lozano-Rodriguez MJ et al (2016) Incorporation of thorium in the zircon structure type through the Th1–xErx(SiO4)1–x(PO4)x thorite-xenotime solid solution. Inorg Chem 55:11273–11282.  https://doi.org/10.1021/acs.inorgchem.6b01862 CrossRefGoogle Scholar
  19. 19.
    Hay RS, Mogilevsky P, Boakye E (2013) Phase transformations in xenotime rare-earth orthophosphates. Acta Mater 61:6933–6947.  https://doi.org/10.1016/j.actamat.2013.08.005 CrossRefGoogle Scholar
  20. 20.
    Shannon RD (1976) Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767CrossRefGoogle Scholar
  21. 21.
    Yang H, Teng Y, Ren X et al (2014) Synthesis and crystalline phase of monazite-type Ce1−xGdxPO4 solid solutions for immobilization of minor actinide curium. J Nucl Mater 444:39–42.  https://doi.org/10.1016/j.jnucmat.2013.09.010 CrossRefGoogle Scholar
  22. 22.
    Xue D, Sun C, Chen X (2017) Hybridization: a chemical bonding nature of atoms. Chin J Chem 35:1452–1458.  https://doi.org/10.1002/cjoc.201700425 CrossRefGoogle Scholar
  23. 23.
    Xue D, Sun C, Chen X (2017) Hybridized valence electrons of 4f0−145d0−16 s2: the chemical bonding nature of rare earth elements. J Rare Earths 35:837–843.  https://doi.org/10.1016/S1002-0721(17)60984-0 CrossRefGoogle Scholar
  24. 24.
    Xue D, Sun C (2017) 4f chemistry towards rare earth materials science and engineering. Sci China Technol Sci 60:1767–1768.  https://doi.org/10.1007/s11431-017-9112-1 CrossRefGoogle Scholar
  25. 25.
    Hay RS, Mogilevsky P, Boakye E (2013) Phase transformations in xenotime rare-earth orthophosphates. Acta Mater 61:6933–6947.  https://doi.org/10.1016/j.actamat.2013.08.005 CrossRefGoogle Scholar
  26. 26.
    Ushakov SV, Helean KB, Navrotsky A, Boatner LA (2001) Thermochemistry of rare-earth orthophosphates. J Mater Res 16:2623–2633.  https://doi.org/10.1557/JMR.2001.0361 CrossRefGoogle Scholar
  27. 27.
    ASTM (2014) Standard test methods for determining chemical durability of nuclear, hazardous, and mixed waste glasses and multiphase glass ceramics: the product consistency test (PCT).  https://doi.org/10.1520/c1285-14
  28. 28.
    Meng C, Ding X, Zhao J et al (2016) Phase evolution and microstructural studies of Gd1−xYbxPO4 (0 ≤ x ≤ 1) ceramics for radioactive waste storage. J Eur Ceram Soc 36:773–779.  https://doi.org/10.1016/j.jeurceramsoc.2015.10.045 CrossRefGoogle Scholar
  29. 29.
    Li K, Xue D (2006) Estimation of electronegativity values of elements in different valence states. J Phys Chem A 110:11332–11337.  https://doi.org/10.1021/jp062886k CrossRefGoogle Scholar
  30. 30.
    Li K, Kang C, Xue D (2013) Effect of electrostatic and size on dopant occupancy in lithium niobate single crystal. Inorg Chem 52:10206–10210.  https://doi.org/10.1021/ic401805x CrossRefGoogle Scholar
  31. 31.
    Begun GM, Beall GW, Boatner LA, Gregor WJ (1981) Raman spectra of the rare earth orthophosphates. J Raman Spectrosc 11:273–278.  https://doi.org/10.1002/jrs.1250110411 CrossRefGoogle Scholar
  32. 32.
    Ruschel K, Nasdala L, Kronz A et al (2012) A Raman spectroscopic study on the structural disorder of monazite–(Ce). Mineral Petrol 105:41–55.  https://doi.org/10.1007/s00710-012-0197-7 CrossRefGoogle Scholar
  33. 33.
    Giarola M, Sanson A, Rahman A et al (2011) Vibrational dynamics of YPO4 and ScPO4 single crystals: an integrated study by polarized Raman spectroscopy and first-principles calculations. Phys Rev B 83:224302.  https://doi.org/10.1103/PhysRevB.83.224302 CrossRefGoogle Scholar
  34. 34.
    Silva EN, Ayala AP, Guedes I et al (2006) Vibrational spectra of monazite-type rare-earth orthophosphates. Opt Mater 29:224–230.  https://doi.org/10.1016/j.optmat.2005.09.001 CrossRefGoogle Scholar
  35. 35.
    Wang X, Teng Y, Huang Y et al (2014) Synthesis and structure of Ce1−xEuxPO4 solid solutions for minor actinides immobilization. J Nucl Mater 451:147–152.  https://doi.org/10.1016/j.jnucmat.2014.03.049 CrossRefGoogle Scholar
  36. 36.
    Andrehs G, Heinrich W (1998) Experimental determination of REE distributions between monazite and xenotime: potential for temperature-calibrated geochronology. Chem Geol 149:83–96.  https://doi.org/10.1016/S0009-2541(98)00039-4 CrossRefGoogle Scholar
  37. 37.
    Cai X, Teng Y, Wu L et al (2016) The synthesis and chemical durability of Nd-doped single-phase zirconolite solid solutions. J Nucl Mater 479:455–460.  https://doi.org/10.1016/j.jnucmat.2016.07.042 CrossRefGoogle Scholar
  38. 38.
    Horlait D, Claparede L, Tocino F et al (2014) Environmental SEM monitoring of Ce1−xLnxO2−x/2 mixed-oxide microstructural evolution during dissolution. J Mater Chem A 2:5193–5203.  https://doi.org/10.1039/C3TA14623E CrossRefGoogle Scholar
  39. 39.
    Malviya R, Chaudhary R (2006) Leaching behavior and immobilization of heavy metals in solidified/stabilized products. J Hazard Mater 137:207–217.  https://doi.org/10.1016/j.jhazmat.2006.01.056 CrossRefGoogle Scholar
  40. 40.
    Fillet C, Advocat T, Bart F et al (2004) Titanate-based ceramics for separated long-lived radionuclides. Comptes Rendus Chim 7:1165–1172.  https://doi.org/10.1016/j.crci.2004.02.018 CrossRefGoogle Scholar
  41. 41.
    Roessler JG, Townsend TG, Ferraro CC (2015) Use of leaching tests to quantify trace element release from waste to energy bottom ash amended pavements. J Hazard Mater 300:830–837.  https://doi.org/10.1016/j.jhazmat.2015.08.028 CrossRefGoogle Scholar
  42. 42.
    Kolonin GR, Shironosova GP (2008) Thermodynamic model of REE leaching from monazite by hydrothermal fluids. Dokl Earth Sci 423:1396–1399.  https://doi.org/10.1134/S1028334X08090158 CrossRefGoogle Scholar
  43. 43.
    Frugier P, Gin S, Minet Y et al (2008) SON68 nuclear glass dissolution kinetics: current state of knowledge and basis of the new GRAAL model. J Nucl Mater 380:8–21.  https://doi.org/10.1016/j.jnucmat.2008.06.044 CrossRefGoogle Scholar
  44. 44.
    Costa G, Polettini A, Pomi R, Stramazzo A (2016) Leaching modelling of slurry-phase carbonated steel slag. J Hazard Mater 302:415–425.  https://doi.org/10.1016/j.jhazmat.2015.10.005 CrossRefGoogle Scholar
  45. 45.
    Claparede L, Guigue M, Jouan G et al (2017) Long-term behavior of refractory thorium-plutonium dioxide solid solutions. J Nucl Mater 483:158–166.  https://doi.org/10.1016/j.jnucmat.2016.11.007 CrossRefGoogle Scholar
  46. 46.
    Danelska A, Ulkowska U, Socha RP, Szafran M (2013) Surface properties of nanozirconia and their effect on its rheological behaviour and sinterability. J Eur Ceram Soc 33:1875–1883.  https://doi.org/10.1016/j.jeurceramsoc.2013.01.019 CrossRefGoogle Scholar
  47. 47.
    Fillet C, Advocat T, Bart F et al (2004) Titanate-based ceramics for separated long-lived radionuclides. Comptes Rendus Chim 7:1165–1172.  https://doi.org/10.1016/j.crci.2004.02.018 CrossRefGoogle Scholar
  48. 48.
    Tang Y, Shih K (2015) Mechanisms of zinc incorporation in aluminosilicate crystalline structures and the leaching behaviour of product phases. Environ Technol 36:2977–2986.  https://doi.org/10.1080/09593330.2014.982715 CrossRefGoogle Scholar
  49. 49.
    Zhang L, Lüttge A (2009) Theoretical approach to evaluating plagioclase dissolution mechanisms. Geochim Cosmochim Acta 73:2832–2849.  https://doi.org/10.1016/j.gca.2009.02.021 CrossRefGoogle Scholar
  50. 50.
    Kamel N, Remil K, Arabi M et al (2010) Effect of the synthesis method on the properties of a Pb-bearing (Y–Gd–Ce) rare-earth phosphate used for the confinement of high-level radioactive waste. J Nucl Mater 401:104–112.  https://doi.org/10.1016/j.jnucmat.2010.04.005 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Wenqi Li
    • 1
  • Xingeng Ding
    • 1
    • 2
  • Cheng Meng
    • 1
  • Chunrong Ren
    • 1
  • Huating Wu
    • 1
  • Hui Yang
    • 1
    • 2
  1. 1.School of Materials Science and EngineeringZhejiang UniversityHangzhouChina
  2. 2.Zhejiang California International Nano Systems InstituteHangzhouChina

Personalised recommendations