Journal of Materials Science

, Volume 53, Issue 9, pp 6602–6612 | Cite as

Enhanced thermal conductivity of diamond/aluminum composites through tuning diamond particle dispersion

  • Zhanqiu Tan
  • Ding-Bang Xiong
  • Genlian Fan
  • Zhizhong Chen
  • Qiang Guo
  • Cuiping Guo
  • Gang Ji
  • Zhiqiang Li
  • Di Zhang
Composites
  • 73 Downloads

Abstract

Diamond/aluminum (Dia/Al) composites were fabricated by powder metallurgy using starting Al powders of different size. Effect of matrix-to-reinforcement particle size ratio (PSR) on diamond particle dispersion was revealed, and higher thermal conductivity of Dia/Al composites with a certain volume fraction was achieved by changing PSR. The results indicated that, with PSR increasing from 0.225 to 0.9, diamond particles tended to show a connecting dispersion and the thermal conductivity of 40 and 50 vol.% Dia/Al composites increased by 21% (from 389 to 472 W/mK) and by 42% (from 442 to 628 W/mK), respectively. The underlying cause was discussed from the point of the coordination number of Al powders around diamond particles. This study supplies a new idea to improve thermal conductivity of Dia/Al composites by tuning particle dispersion for the first time, which is also applicable to other metal matrix composites.

Notes

Acknowledgements

The authors would like to acknowledge the financial support of the National Natural Science Foundation (Nos. 51401123, 51371115, 51671130), the Ministry of Science & Technology of China (No. 2017YFB0406200), the 111 Project (Grant No. B16032), and Shanghai Science & Technology Committee (Nos. 15JC1402100, 17ZR1441500, 14DZ2261200, 14520710100). Dr. Z. Tan thanks to the Project funded by the China Postdoctoral Science Foundation (No. 2014M561469). And all the authors acknowledge the Shanghai Synchrotron Radiation Facility (SSRF) for the analysis of synchrotron radiation CT of the metal matrix composites.

References

  1. 1.
    Zweben C (2008) Advances in photonics thermal management and packaging materials. Proc Soc Photo-Opt Inst 6899:689918–6899181Google Scholar
  2. 2.
    Qu XH, Zhang L, Wu M, Ren SB (2011) Review of metal matrix composites with high thermal conductivity for thermal management applications. Prog Nat Sci 21:189–197CrossRefGoogle Scholar
  3. 3.
    Moore AL, Shi L (2014) Emerging challenges and materials for thermal management of electronics. Mater Today 17:163–174CrossRefGoogle Scholar
  4. 4.
    Arpón R, Molina JM, Saravanan RA, García-Cordovilla C, Louis E, Narciso J (2003) Thermal expansion behaviour of aluminium/SiC composites with bimodal particle distributions. Acta Mater 51:3145–3156CrossRefGoogle Scholar
  5. 5.
    Molina-Jordá JM (2015) Nano- and micro-/meso-scale engineered magnesium/diamond composites: novel materials for emerging challenges in thermal management. Acta Mater 96:101–110CrossRefGoogle Scholar
  6. 6.
    Schobel M, Degischer HP, Vaucher S, Hofmann M, Cloetens P (2010) Reinforcement architectures and thermal fatigue in diamond particle-reinforced aluminum. Acta Mater 58:6421–6430CrossRefGoogle Scholar
  7. 7.
    Kidalov SV, Shakhov FM (2009) Thermal conductivity of diamond composites. Materials 2:2467–2495Google Scholar
  8. 8.
    Monje IE, Louis E, Molina JM (2016) Role of Al4C3 on the stability of the thermal conductivity of Al/diamond composites subjected to constant or oscillating temperature in a humid environment. J Mater Sci 51:1–10.  https://doi.org/10.1007/s10853-016-0072-8 CrossRefGoogle Scholar
  9. 9.
    Molina-Jorda JM (2015) Design of composites for thermal management: aluminum reinforced with diamond-containing bimodal particle mixtures. Compos Part A 70:45–51CrossRefGoogle Scholar
  10. 10.
    Chen H, Jia CC, Li SJ (2012) Interfacial characterization and thermal conductivity of diamond/Cu composites prepared by two HPHT techniques. J Mater Sci 47:3367–3375.  https://doi.org/10.1007/s10853-011-6180-6 CrossRefGoogle Scholar
  11. 11.
    Tan ZQ, Li ZQ, Fan GL, Kai XZ, Ji G, Zhang LT et al (2013) Fabrication of diamond/aluminum composites by vacuum hot pressing: process optimization and thermal properties. Compos Part B 47:173–180CrossRefGoogle Scholar
  12. 12.
    Yamamoto Y, Imai T, Tanabe K, Tsuno T, Kumazawa Y, Fujimori N (1997) The measurement of thermal properties of diamond. Diam Relat Mater 6:1057–1061CrossRefGoogle Scholar
  13. 13.
    Flaquer J, Rios A, Martin-Meizoso A, Nogales S, Bohm H (2007) Effect of diamond shapes and associated thermal boundary resistance on thermal conductivity of diamond-based composites. Comp Mater Sci 41:156–163CrossRefGoogle Scholar
  14. 14.
    Molina JM, Saravanan RA, Arpon R, Garcia-Cordovilla C, Louis E, Narciso J (2002) Pressure infiltration of liquid aluminium into packed SiC particulate with a bimodal size distribution. Acta Mater 50:247–257CrossRefGoogle Scholar
  15. 15.
    Zhang Y, Li J, Zhao L, Wang X (2015) Optimisation of high thermal conductivity Al/diamond composites produced by gas pressure infiltration by controlling infiltration temperature and pressure. J Mater Sci 50:688–696.  https://doi.org/10.1007/s10853-014-8628-y CrossRefGoogle Scholar
  16. 16.
    Weber L, Tavangar R (2009) Diamond-based metal matrix composites for thermal management made by liquid metal infiltration-potential and limits. Adv Mater Res 59:111–115CrossRefGoogle Scholar
  17. 17.
    Tan ZQ, Li ZQ, Xiong DB, Fan GL, Ji G, Zhang D (2014) A predictive model for interfacial thermal conductance in surface metallized diamond aluminum matrix composites. Mater Des 55:257–262CrossRefGoogle Scholar
  18. 18.
    Monje IE, Louis E, Molina JM (2013) Optimizing thermal conductivity in gas-pressure infiltrated aluminum/diamond composites by precise processing control. Compos Part A 48:9–14CrossRefGoogle Scholar
  19. 19.
    Tan Z, Ji G, Addad A, Li Z, Silvain J-F, Zhang D (2016) Tailoring interfacial bonding states of highly thermal performance diamond/Al composites: spark plasma sintering versus vacuum hot pressing. Compos A 91:9–19CrossRefGoogle Scholar
  20. 20.
    Monje IE, Louis E, Molina JM (2016) Interfacial nano-engineering in Al/diamond composites for thermal management by in situ diamond surface gas desorption. Scr Mater 115:159–163CrossRefGoogle Scholar
  21. 21.
    Feng H, Yu JK, Tan W (2010) Microstructure and thermal properties of diamond/aluminum composites with TiC coating on diamond particles. Mater Chem Phys 124:851–855CrossRefGoogle Scholar
  22. 22.
    Tan ZQ, Li ZQ, Fan GL, Guo Q, Kai XZ, Ji G et al (2013) Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer. Mater Des 47:160–166CrossRefGoogle Scholar
  23. 23.
    Weber L, Tavangar R (2007) On the influence of active element content on the thermal conductivity and thermal expansion of Cu–X (X=Cr, B) diamond composites. Scr Mater 57:988–991CrossRefGoogle Scholar
  24. 24.
    Zhang H, Wu J, Zhang Y, Li J, Wang X, Sun Y (2015) Mechanical properties of diamond/Al composites with Ti-coated diamond particles produced by gas-assisted pressure infiltration. Mater Sci Eng A 626:362–368CrossRefGoogle Scholar
  25. 25.
    Xue C, Yu JK (2013) Enhanced thermal conductivity in diamond/aluminum composites: comparison between the methods of adding Ti into Al matrix and coating Ti onto diamond surface. Surf Coat Tech 217:46–50CrossRefGoogle Scholar
  26. 26.
    Yang W, Chen G, Wang P, Qiao J, Hu F, Liu S et al (2017) Enhanced thermal conductivity in Diamond/Aluminum composites with tungsten coatings on diamond particles prepared by magnetron sputtering method. J Alloy Compd 726:623–631CrossRefGoogle Scholar
  27. 27.
    Che Z, Wang Q, Wang L, Li J, Zhang H, Zhang Y et al (2017) Interfacial structure evolution of Ti-coated diamond particle reinforced Al matrix composite produced by gas pressure infiltration. Compos B 113:285–290CrossRefGoogle Scholar
  28. 28.
    Li Z, Tan Z, Fan G, Zhang D (2013) Progress of metal matrix composites for efficient thermal management applications. Mater China 32:431–440Google Scholar
  29. 29.
    Ashby M (2013) Designing architectured materials. Scr Mater 68:4–7CrossRefGoogle Scholar
  30. 30.
    Kusy R (1977) Influence of particle size ratio on the continuity of aggregates. J Appl Phys 48:5301–5305CrossRefGoogle Scholar
  31. 31.
    Zhang Y, Zhang HL, Wu JH, Wang XT (2011) Enhanced thermal conductivity in copper matrix composites reinforced with titanium-coated diamond particles. Scr Mater 65:1097–1100CrossRefGoogle Scholar
  32. 32.
    Tan ZQ, Li ZQ, Fan GL, Kai XZ, Ji G, Zhang LT et al (2013) Diamond/aluminum composites processed by vacuum hot pressing: microstructure characteristics and thermal properties. Diam Relat Mater 31:1–5CrossRefGoogle Scholar
  33. 33.
    Ji G, Tan ZQ, Shabadi R, Li ZQ, Grunewald W, Addad A et al (2014) Triple ion beam cutting of diamond/Al composites for interface characterization. Mater Charact 89:132–137CrossRefGoogle Scholar
  34. 34.
    Kleiner S, Khalid FA, Ruch PW, Meier S, Beffort O (2006) Effect of diamond crystallographic orientation on dissolution and carbide formation in contact with liquid aluminium. Scr Mater 55:291–294CrossRefGoogle Scholar
  35. 35.
    Bruggeman DAG (1935) The prediction of the thermal conductivity of heterogeneous mixtures. Ann Phys 24:636–664CrossRefGoogle Scholar
  36. 36.
    Tavangar R, Molina JM, Weber L (2007) Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast. Scr Mater 56:357–360CrossRefGoogle Scholar
  37. 37.
    Molina JM, Prieto R, Narciso J, Louis E (2009) The effect of porosity on the thermal conductivity of Al-12 wt% Si/SiC composites. Scr Mater 60:582–585CrossRefGoogle Scholar
  38. 38.
    Stoner R, Maris H, Anthony T, Banholzer W (1992) Measurements of the Kapitza conductance between diamond and several metals. Phys Rev Lett 68:1563–1566CrossRefGoogle Scholar
  39. 39.
    Caccia M, Rodriguez A, Narciso J (2014) Diamond surface modification to enhance interfacial thermal conductivity in al/diamond composites. JOM 66:920–925CrossRefGoogle Scholar
  40. 40.
    Molina JM, Narciso J, Weber L, Mortensen A, Louis E (2008) Thermal conductivity of Al–SiC composites with monomodal and bimodal particle size distribution. Mater Sci Eng A 480:483–488CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Metal Matrix Composites, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Unité Matériaux et Transformations (UMET)CNRS, UMR 8207, Université Lille 1Villeneuve d’AscqFrance

Personalised recommendations