Journal of Materials Science

, Volume 53, Issue 9, pp 6729–6740 | Cite as

Gas-sensing properties of composites of Y-zeolite and SnO2

  • Qingpan Huang
  • Jing Wang
  • Yanhui Sun
  • Xiaogan Li
  • Xiaofeng Wang
  • Ziyao Zhao
Electronic materials
  • 105 Downloads

Abstract

Y-zeolite was first modified by means of ions exchange with Al, Ca and Na, respectively. The modified materials were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and inductively coupled plasma optical emission spectrometry (ICP-OES). Gas sensors were fabricated by SnO2 and coating Y-zeolites on the outside of SnO2 surface, respectively. It was found that the responses of the composites of all types of zeolite- and SnO2-based sensors became lower comparing with that of the pure SnO2-based one response of SnO2 sensor to ethanol vapor. It indicates a suppression effect of zeolites on the response to ethanol vapor. In contrast, the response of the composite-sensing materials of the modified Y-zeolite/SnO2-based sensors except the Ca-modified one to acetone indicates a significantly improved response, 2–3 times higher than that of pure SnO2-based sensor which is smaller than the one of SnO2 sensor. The possible mechanism of the effects of the Y-zeolites on the response of the sensors has been discussed.

Notes

Acknowledgements

The authors thank the National Natural Science Foundation of China (61574025, 61474012 and 51602035) for financial support. The authors also thank Mr. Liu Xuanzhou for his help in the experiments.

References

  1. 1.
    Judith Vijaya J, Kennedy LJ, Sekaran G, Bayhan M, William MA (2008) Preparation and VOC gas sensing properties of Sr(II)-added copper aluminate spinel composites. Sens Actuators B Chem 134(2):604–612.  https://doi.org/10.1016/j.snb.2008.06.012 CrossRefGoogle Scholar
  2. 2.
    Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151(2):362–367.  https://doi.org/10.1016/j.envpol.2007.06.012 CrossRefGoogle Scholar
  3. 3.
    Tokumura M, Nakajima R, Znad HT, Kawase Y (2008) Chemical absorption process for degradation of VOC gas using heterogeneous gas–liquid photocatalytic oxidation: toluene degradation by photo-Fenton reaction. Chemosphere 73(5):768–775.  https://doi.org/10.1016/j.chemosphere.2008.06.021 CrossRefGoogle Scholar
  4. 4.
    Lee J-H (2009) Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sens Actuators B Chem 140(1):319–336.  https://doi.org/10.1016/j.snb.2009.04.026 CrossRefGoogle Scholar
  5. 5.
    Kim Y-S, Hwang I-S, Kim S-J, Lee C-Y, Lee J-H (2008) CuO nanowire gas sensors for air quality control in automotive cabin. Sens Actuators B Chem 135(1):298–303.  https://doi.org/10.1016/j.snb.2008.08.026 CrossRefGoogle Scholar
  6. 6.
    Young-Jin C, In-Sung H, Jae-Gwan P, Kyoung Jin C, Jae-Hwan P, Jong-Heun L (2008) Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity. Nanotechnology 19(9):095508.  https://doi.org/10.1088/0957-4484/19/9/095508 CrossRefGoogle Scholar
  7. 7.
    Kim H-R, Choi K-I, Lee J-H, Akbar SA (2009) Highly sensitive and ultra-fast responding gas sensors using self-assembled hierarchical SnO2 spheres. Sens Actuators B Chem 136(1):138–143.  https://doi.org/10.1016/j.snb.2008.11.016 CrossRefGoogle Scholar
  8. 8.
    Srivastava AK (2003) Detection of volatile organic compounds (VOCs) using SnO2 gas-sensor array and artificial neural network. Sens Actuators B Chem 96(1–2):24–37.  https://doi.org/10.1016/S0925-4005(03)00477-5 CrossRefGoogle Scholar
  9. 9.
    Leite ER, Weber IT, Longo E, Varela JA (2000) A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor applications. Adv Mater 12(13):965–968.  https://doi.org/10.1002/1521-4095(200006)12:13<965::aid-adma965>3.0.co;2-7
  10. 10.
    Lim C-B, Oh S (1996) Microstructure evolution and gas sensitivities of Pd-doped SnO2-based sensor prepared by three different catalyst-addition processes. Sens Actuators B Chem 30(3):223–231.  https://doi.org/10.1016/0925-4005(96)80053-0 CrossRefGoogle Scholar
  11. 11.
    Duta A, Visa M (2015) Simultaneous removal of two industrial dyes by adsorption and photocatalysis on a fly-ash–TiO2 composite. J Photochem Photobiol A 306:21–30.  https://doi.org/10.1016/j.jphotochem.2015.03.007 CrossRefGoogle Scholar
  12. 12.
    Reiß S, Schönauer D, Hagen G, Fischerauer G, Moos R (2011) Monitoring the ammonia loading of zeolite-based ammonia SCR catalysts by a microwave method. Chem Eng Technol 34(5):791–796.  https://doi.org/10.1002/ceat.201000546 CrossRefGoogle Scholar
  13. 13.
    Shah R, Payne MC, Lee MH, Gale JD (1996) Understanding the catalytic behavior of zeolites: a first-principles study of the adsorption of methanol. Science 271(5254):1395–1397.  https://doi.org/10.1126/science.271.5254.1395 CrossRefGoogle Scholar
  14. 14.
    Visa M, Andronic L, Duta A (2015) Fly ash–TiO2 nanocomposite material for multi-pollutants wastewater treatment. J Environ Manage 150:336–343.  https://doi.org/10.1016/j.jenvman.2014.10.026 CrossRefGoogle Scholar
  15. 15.
    Yilmaz B, Müller U (2009) Catalytic applications of zeolites in chemical industry. Top Catal 52(6):888–895.  https://doi.org/10.1007/s11244-009-9226-0 CrossRefGoogle Scholar
  16. 16.
    Güntner AT, Abegg S, Wegner K, Pratsinis SE (2018) Zeolite membranes for highly selective formaldehyde sensors. Sens Actuators B Chem 257(Supplement C):916–923.  https://doi.org/10.1016/j.snb.2017.11.035 CrossRefGoogle Scholar
  17. 17.
    Caro J, Noack M (2008) Zeolite membranes—recent developments and progress. Microporous Mesoporous Mater 115(3):215–233.  https://doi.org/10.1016/j.micromeso.2008.03.008 CrossRefGoogle Scholar
  18. 18.
    Jadsadapattarakul D, Thanachayanont C, Nukeaw J, Sooknoi T (2010) Improved selectivity, response time and recovery time by [0 1 0] highly preferred-orientation silicalite-1 layer coated on SnO2 thin film sensor for selective ethylene gas detection. Sens Actuators B Chem 144(1):73–80.  https://doi.org/10.1016/j.snb.2009.10.035 CrossRefGoogle Scholar
  19. 19.
    Lai Z, Bonilla G, Diaz I, Nery JG, Sujaoti K, Amat MA, Kokkoli E, Terasaki O, Thompson RW, Tsapatsis M, Vlachos DG (2003) Microstructural optimization of a zeolite membrane for organic vapor separation. Science 300(5618):456–460.  https://doi.org/10.1126/science.1082169 Google Scholar
  20. 20.
    Li X, Dutta PK (2010) Interaction of dimethylmethylphosphonate with zeolite Y: impedance-based sensor for detecting nerve agent simulants. J Phys Chem C 114(17):7986–7994.  https://doi.org/10.1021/jp100088w CrossRefGoogle Scholar
  21. 21.
    Lin YS (2001) Microporous and dense inorganic membranes: current status and prospective. Sep Purif Technol 25(1–3):39–55.  https://doi.org/10.1016/S1383-5866(01)00089-2 CrossRefGoogle Scholar
  22. 22.
    Varsani P, Afonja A, Williams DE, Parkin IP, Binions R (2011) Zeolite-modified WO3 gas sensors—enhanced detection of NO2. Sens Actuators B Chem 160(1):475–482.  https://doi.org/10.1016/j.snb.2011.08.014 CrossRefGoogle Scholar
  23. 23.
    Vilaseca M, Coronas J, Cirera A, Cornet A, Morante JR, Santamaria J (2007) Gas detection with SnO2 sensors modified by zeolite films. Sens Actuators B Chem 124(1):99–110.  https://doi.org/10.1016/j.snb.2006.12.009 CrossRefGoogle Scholar
  24. 24.
    Yang J-C, Dutta PK (2009) Solution-based synthesis of efficient WO3 sensing electrodes for high temperature potentiometric NOx sensors. Sens Actuators B Chem 136(2):523–529.  https://doi.org/10.1016/j.snb.2008.09.017 CrossRefGoogle Scholar
  25. 25.
    Tarttelin Hernández P, Hailes SMV, Parkin IP (2017) Hydrocarbon detection with metal oxide semiconducting gas sensors modified by overlayer or admixture of zeolites Na-A, H-Y and H-ZSM-5. Sens Actuators B Chem 242:1281–1295.  https://doi.org/10.1016/j.snb.2016.09.006 CrossRefGoogle Scholar
  26. 26.
    Vilaseca M, Coronas J, Cirera A, Cornet A, Morante JR, Santamaria J (2008) Development and application of micromachined Pd/SnO2 gas sensors with zeolite coatings. Sens Actuators B Chem 133(2):435–441.  https://doi.org/10.1016/j.snb.2008.03.002 CrossRefGoogle Scholar
  27. 27.
    Huang H, Zhou J, Chen S, Zeng L, Huang Y (2004) A highly sensitive QCM sensor coated with Ag+-ZSM-5 film for medical diagnosis. Sens Actuators B Chem 101(3):316–321.  https://doi.org/10.1016/j.snb.2004.04.001 CrossRefGoogle Scholar
  28. 28.
    Moos R, Müller R, Plog C, Knezevic A, Leye H, Irion E, Braun T, Marquardt K-J, Binder K (2002) Selective ammonia exhaust gas sensor for automotive applications. Sens Actuators B Chem 83(1–3):181–189.  https://doi.org/10.1016/S0925-4005(01)01038-3 CrossRefGoogle Scholar
  29. 29.
    Aoki K, Tuan VA, Falconer JL, Noble RD (2000) Gas permeation properties of ion-exchanged ZSM-5 zeolite membranes. Microporous Mesoporous Mater 39(3):485–492.  https://doi.org/10.1016/S1387-1811(00)00224-9 CrossRefGoogle Scholar
  30. 30.
    Hasegawa Y, Watanabe K, Kusakabe K, Morooka S (2001) The separation of CO2 using Y-type zeolite membranes ion-exchanged with alkali metal cations. Sep Purif Technol 22–23:319–325.  https://doi.org/10.1016/S1383-5866(00)00154-4 CrossRefGoogle Scholar
  31. 31.
    Mann DP, Paraskeva T, Pratt KFE, Parkin IP, Williams DE (2005) Metal oxide semiconductor gas sensors utilizing a Cr-zeolite catalytic layer for improved selectivity. Meas Sci Technol 16(5):1193–1200CrossRefGoogle Scholar
  32. 32.
    Xu K, Yuan C, Caro J, Huang A (2016) Silver-exchanged zeolite LTA molecular sieving membranes with enhanced hydrogen selectivity. J Membr Sci 511:1–8.  https://doi.org/10.1016/j.memsci.2016.03.036 CrossRefGoogle Scholar
  33. 33.
    Lisnawati E, Krisnandi YK, Triyono D, Aip (2017) Modification of hybrid NaY/ZSM-5/IDC zeolite composite with exchanged Cu2+ and its application as ammonia gas sensor. In: International conference on chemistry, chemical process and engineering, vol 1823. AIP Conference Proceedings.  https://doi.org/10.1063/1.4978169
  34. 34.
  35. 35.
    Ward JW (1967) The nature of active sites on zeolites. J Catal 9(3):225–236.  https://doi.org/10.1016/0021-9517(67)90248-5 CrossRefGoogle Scholar
  36. 36.
    Zheng Y, Li X, Dutta PK (2012) Exploitation of unique properties of zeolites in the development of gas sensors. Sensors 12(4):5170–5194CrossRefGoogle Scholar
  37. 37.
    Shao Q, Huang LL, Zhou J, Lu LH, Zhang LZ, Lu XH, Jiang SY, Gubbins KE, Zhu YD, Shen WF (2007) Molecular dynamics study on diameter effect in structure of ethanol molecules confined in single-walled carbon nanotubes. J Phys Chem C 111(43):15677–15685.  https://doi.org/10.1021/jp0736140 CrossRefGoogle Scholar
  38. 38.
    Inaba M, Murata K, Saito M, Takahara I (2006) Ethanol conversion to aromatic hydrocarbons over several zeolite catalysts. React Kinet Catal Lett 88(1):135–141.  https://doi.org/10.1007/s11144-006-0120-5 CrossRefGoogle Scholar
  39. 39.
    Hathaway PE, Davis ME (1989) Base catalysis by alkali modified zeolites. J Catal 119(2):497–507.  https://doi.org/10.1016/0021-9517(89)90177-2 CrossRefGoogle Scholar
  40. 40.
    Chen Y, Zhang Y, Li D, Gao F, Feng C, Wen S, Ruan S (2015) Humidity sensor based on AlPO4-5 zeolite with high responsivity and its sensing mechanism. Sens Actuators B Chem 212:242–247.  https://doi.org/10.1016/j.snb.2015.02.017 CrossRefGoogle Scholar
  41. 41.
    Masuda T, Fujikata Y, Nishida T, Hashimoto K (1998) The influence of acid sites on intracrystalline diffusivities within MFI-type zeolites. Microporous Mesoporous Mater 23(3–4):157–167.  https://doi.org/10.1016/S1387-1811(98)00058-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianChina
  2. 2.College of Information & Communication EngineeringDalian Minzu UniversityDalianChina
  3. 3.School of Mathematical and Physical SciencesPanjin Campus, Dalian University of TechnologyDalianChina

Personalised recommendations