Journal of Materials Science

, Volume 53, Issue 9, pp 7004–7016 | Cite as

A hybrid magnetorheological elastomer developed by encapsulation of magnetorheological fluid



A new hybrid MR elastomer was fabricated by encapsulating a magnetorheological fluid (MR fluid) within a UV-curable silicone elastomer. A strong magneto-deformation effect was observed where the hybrid MR elastomer changed its shape in the presence of a magnetic field. Furthermore, when a moderately strong magnetic field was applied, the elastic and damping properties of the hybrid MR elastomer changed obviously. The magnetic field strength, strain amplitude, strain rate, preload, and orientation of magnetic flux direction affected the behavior of the new hybrid MR elastomer. The hybrid MR elastomer also exhibited a higher MR effect when compared with conventional MR elastomer. The investigation also found that the combination of magnetic field strength and preload highly influenced the hybrid MR elastomer behavior. This MR fluid-encapsulated elastomer is expected to be a potential candidate for the tunable spring-damper element as well soft actuators.



This work was supported by the Academic Research Funds (RG189/14) from the Ministry of Education, Singapore.


  1. 1.
    Rabinow J (1948) The magnetic fluid clutch. Am Inst Electr Eng 67:1308–1315CrossRefGoogle Scholar
  2. 2.
    Kallio M, Lindroos T, Aalto S, Järvinen E, Kärnä T, Meinander T (2007) Dynamic compression testing of a tunable spring element consisting of a magnetorheological elastomer. Smart Mater Struct 16:506–514CrossRefGoogle Scholar
  3. 3.
    Jerzy K, Michał K, Daniel L (2011) Magnetomechanical properties of anisotropic and isotropic magnetorheological composites with thermoplastic elastomer matrices. Smart Mater Struct 20:085006–085018CrossRefGoogle Scholar
  4. 4.
    Carlson JD, Jolly MR (2000) MR fluid, foam and elastomer devices. Mechatronics 10:555–569CrossRefGoogle Scholar
  5. 5.
    Zhou GY (2003) Shear properties of a magnetorheological elastomer. Smart Mater Struct 12:139–146CrossRefGoogle Scholar
  6. 6.
    Schubert G, Harrison P (2016) Magnetic induction measurements and identification of the permeability of magneto-rheological elastomers using finite element simulations. J Magn Magn Mater 404:205–214CrossRefGoogle Scholar
  7. 7.
    Li Y, Li J, Li W, Du H (2014) A state-of-the-art review on magnetorheological elastomer devices. Smart Mater Struct 23:123001–123024CrossRefGoogle Scholar
  8. 8.
    Ubaidillah Sutrisno J, Purwanto A, Mazlan SA (2015) Recent progress on magnetorheological solids: materials, fabrication, testing, and applications. Adv Eng Mater 17:563–597CrossRefGoogle Scholar
  9. 9.
    Boczkowska A, Awietjan SF (2009) Smart composites of urethane elastomers with carbonyl iron. J Mater Sci 44:4104–4111. CrossRefGoogle Scholar
  10. 10.
    Zhang X, Suili P, Weijia W, Weihua L (2008) Analysis and fabrication of patterned magnetorheological elastomers. Smart Mater Struct 17:045001–045005CrossRefGoogle Scholar
  11. 11.
    Ashtiani M, Hashemabadi SH, Ghaffari A (2015) A review on the magnetorheological fluid preparation and stabilization. J Magn Magn Mater 374:716–730CrossRefGoogle Scholar
  12. 12.
    Mark RJ, Carlson JD, Beth CM (1996) A model of the behaviour of magnetorheological materials. Smart Mater Struct 5:607–614CrossRefGoogle Scholar
  13. 13.
    Dyniewicz B, Bajkowski JM, Bajer CI (2015) Semi-active control of a sandwich beam partially filled with magnetorheological elastomer. Mech Syst Signal Process 60–61:695–705CrossRefGoogle Scholar
  14. 14.
    Jian Y, Haiping D, Weihua L, Yancheng L, Jianchun L, Shuaishuai S, Deng HX (2013) Experimental study and modeling of a novel magnetorheological elastomer isolator. Smart Mater Struct 22:117001–117014CrossRefGoogle Scholar
  15. 15.
    Nayak B, Dwivedy SK, Murthy KS (2015) Fabrication and characterization of magnetorheological elastomer with carbon black. J Intell Mater Syst Struct 26:830–839CrossRefGoogle Scholar
  16. 16.
    Wang X, Gordaninejad F, Calgar M, Liu Y, Sutrisno J, Fuchs A (2008) Electrical properties of magneto-rheological elastomers. In: ASME conference on smart materials, adaptive structures and intelligent systems, Ellicott City, MD, USA, pp 869–874Google Scholar
  17. 17.
    Bastola AK, Hoang VT, Li L (2017) A novel hybrid magnetorheological elastomer developed by 3D printing. Mater Des 114:391–397CrossRefGoogle Scholar
  18. 18.
    Schubert G, Harrison P (2015) Large-strain behaviour of magneto-rheological elastomers tested under uniaxial compression and tension, and pure shear deformations. Polym Test 42:122–134CrossRefGoogle Scholar
  19. 19.
    Zhou Y, Jerrams S, Chen L (2013) Multi-axial fatigue in magnetorheological elastomers using bubble inflation. Mater Des 50:68–71CrossRefGoogle Scholar
  20. 20.
    Mikhailov VP, Bazinenkov AM (2017) Active vibration isolation platform on base of magnetorheological elastomers. J Magn Magn Mater 431:266–268CrossRefGoogle Scholar
  21. 21.
    Zhou GY, Jiang ZY (2003) Dynamic deformation in MR elastomer driven by magnetic field. In: Proceedings of SPIE 5053, smart structures and materials active materials: behavior and mechanics, San Diego, CA, USA. SPIE, pp 603–611Google Scholar
  22. 22.
    Diguet G, Beaugnon E, Cavaillé J (2010) Shape effect in the magnetostriction of ferromagnetic composite. J Magn Magn Mater 322:3337–3341CrossRefGoogle Scholar
  23. 23.
    Stepanov G, Kramarenko EY, Semerenko D (2013) Magnetodeformational effect of the magnetoactive elastomer and its possible applications. In: 13th international conference on electrorheological fluids and magnetorheological suspensions, Ankara, Turkey. IOP Publishing, pp 012031–012034Google Scholar
  24. 24.
    Bica I (2009) Influence of the transverse magnetic field intensity upon the electric resistance of the magnetorheological elastomer containing graphite microparticles. Mater Lett 63:2230–2232CrossRefGoogle Scholar
  25. 25.
    Wang X, Gordaninejad F (2009) A new magnetorheological fluid-elastomer mount: phenomenological modeling and experimental study. Smart Mater Struct 18:095045–095054CrossRefGoogle Scholar
  26. 26.
    Zeng J, Guo Y, Li Y, Zhu J, Li J (2013) Two-dimensional magnetic property measurement for magneto-rheological elastomer. J Appl Phys 113:17A919–17A921CrossRefGoogle Scholar
  27. 27.
    York D, Wang X, Gordaninejad F (2011) A new magnetorheological mount for vibration control. J Vib Acoust 133:031003–031012CrossRefGoogle Scholar
  28. 28.
    York D, Wang X, Gordaninejad F (2007) A new MR fluid-elastomer vibration isolator. J Intell Mater Syst Struct 18:1221–1225CrossRefGoogle Scholar
  29. 29.
    Bastola AK, Paudel M, Li L (2017) 3D printed magnetorheological elastomers. In: ASME 2017 conference on smart materials, adaptive structures and intelligent systems, Snowbird, Utah, USA, pp V001T001A001-005Google Scholar
  30. 30.
    Dohmen E, Boisly M, Borin D, Kästner M, Ulbricht V, Gude M, Hufenbach W, Heinrich G, Odenbach S (2014) Advancing towards polyurethane-based magnetorheological composites. Adv Eng Mater 16:1270–1275CrossRefGoogle Scholar
  31. 31.
    Jerzy K, Daniel L (2007) Inelastic properties of magnetorheological composites: I. Fabrication, experimental tests, cyclic shear properties. Smart Mater Struct 16:1948–1953CrossRefGoogle Scholar
  32. 32.
    Suraj SD, Gareth HM (2007) Adaptive energy-absorbing materials using field-responsive fluid-impregnated cellular solids. Smart Mater Struct 16:106–113CrossRefGoogle Scholar
  33. 33.
    Mullins L (1969) Softening of rubber by deformation. Rubber Chem Technol 42:339–362CrossRefGoogle Scholar
  34. 34.
    Bueche F (1960) Molecular basis for the Mullins effect. J Appl Polym Sci 4:107–114CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Institute for Sports ResearchNanyang Technological UniversitySingaporeSingapore

Personalised recommendations