Journal of Materials Science

, Volume 53, Issue 9, pp 6450–6458 | Cite as

Role of lanthanum in thermoluminescence properties of La2xLu2(1−x)SiO5:Ce crystals

  • Tiantian Wang
  • Dongzhou Ding
  • Xiaopu Chen
  • Zewang Hu
  • Zhiming Zhang
  • Wei Hou
  • Junjie Shi
Chemical routes to materials


The influence of lanthanum content on thermally stimulated luminescence properties of La2xLu2(1−x)SiO5:Ce (x = 0, 0.08, 0.18 and 1.50 at.%) crystals was investigated. Trapping parameters such as electron trap depth Et and electron traps content n 0 were fitted with general order kinetic function. According to the results of the VUV transmittance spectra and band gap calculation which based on the density functional theory with the generalized gradient approximation of Perdew–Burke–Ernzerhof (GGA–PBE), band structure of the crystals and recombination mechanisms of released electrons were further studied. Results showed that there were mainly two kinds of electron traps, namely shallow (Et ≈ 0.2 eV) and deep (Et ≈ 1.0 eV) traps. With the increasing of La content, the concentration of deep traps was obviously depressed, and the depth of deep traps decreased at the same time, which was explained by suggesting the downward shift of the bottom of conduction band.



The authors would like to thank Prof. Guohao Ren and Prof. Jiang Li in Shanghai Institute of Ceramics, CAS for the help in the TSL measurements. The authors thank beam line 4B8 of Beijing Synchrotron Radiation Facility for providing the beam time. This work was supported by National Natural Science Foundation of China (Grant No. 11475241) and Science and Technology Commission of Shanghai Municipality (Grant No. 15DZ2251200).


  1. 1.
    Melcher CL, Schweitzer JS (1992) A promising new scintillator: cerium-doped lutetium oxyorthosilicate. Nucl Instrum Method A 314:212CrossRefGoogle Scholar
  2. 2.
    Melcher CL (1990) Lutetium orthosilicate single crystal scintillator detector, U.S. Patent No. 4,958,080Google Scholar
  3. 3.
    Mao RH, Zhang LY, Zhu RY (2011) LSO/LYSO crystals for future HEP experiments. J Phys Conf Ser 293:012004CrossRefGoogle Scholar
  4. 4.
    Zavartsev YD, Zavertyaev MV, Zagumennyi AI et al (2013) New radiation resistant scintillator LFS-3 for electromagnetic calorimeters. Bull Lebedev Phys Inst 40:34CrossRefGoogle Scholar
  5. 5.
    Chen JM, Mao RH, Zhang LY et al (2007) Large size LSO and LYSO crystals for future high energy physics experiments. IEEE Trans Nucl Sci 54:718CrossRefGoogle Scholar
  6. 6.
    Dean JA (1999) Lange’s handbook of chemistry version 15th, section 4 (properties of atoms, radicals, and bonds). McGraw-Hill Inc, New YorkGoogle Scholar
  7. 7.
    Wang Y, Zhao Y, White D et al (2017) Factors controlling the thermoluminescence spectra of rare earth doped calcium fluoride. J Lumin 184:55CrossRefGoogle Scholar
  8. 8.
    Singh D, Kaur J, Suryanarayana NS et al (2017) Synthesis and luminescent behavior of UV induced Dy3+ activated LaAlO3. J Mater Sci-Mater Electron 28:2462CrossRefGoogle Scholar
  9. 9.
    Morales-Hernández A, Zarate-Medina J, Contreras-García ME et al (2016) Synthesis and thermoluminescence of LaAlO3:Pr3+ to UVC radiation dosimetry. Appl Radiat Isot 118:12CrossRefGoogle Scholar
  10. 10.
    Gu M, Jia LC, Liu XL et al (2010) Luminescent properties of Na-codoped Lu2SiO5: Ce phosphor. J Alloy Compd 502:190CrossRefGoogle Scholar
  11. 11.
    Yang K, Spurrier MA, Rothfuss H et al (2009) The effect of calcium co-doping on praseodymium doped LSO. IEEE Trans Nucl Sci 56:968CrossRefGoogle Scholar
  12. 12.
    Yang K, Melcher CL, Koschan MA et al (2011) Effect of Ca co-doping on the luminescence centers in LSO: Ce single crystals. IEEE Trans Nucl Sci 58:1394CrossRefGoogle Scholar
  13. 13.
    Sidletskiy O, Belsky A, Gektin A et al (2012) Structure-property correlations in a Ce-doped (Lu, Gd)2SiO5: Ce scintillator. Cryst Growth Des 12:4411CrossRefGoogle Scholar
  14. 14.
    Masalov AA, Vyagin OG, Ganina II et al (2009) Effect of coactivation with Dy3+ and Yb3+ ions on the efficiency of energy storage in Lu2SiO5:Ce3+ crystals. Tech Phys Lett 35:154CrossRefGoogle Scholar
  15. 15.
    Starzhinsky NG, Sidletskiy OT, Grinyov BV et al (2009) Luminescence kinetics of crystals LSO co-doped with rare-earth elements. Funct Mater 16:431Google Scholar
  16. 16.
    Cooke DW, McClellan KJ, Bennett BL et al (2000) Crystal growth and optical characterization of cerium-doped Lu1.8Y0.2SiO5. J Appl Phys 88:7360CrossRefGoogle Scholar
  17. 17.
    Yu Z, Gorbenko V, Voloshinovskii A et al (2012) Luminescence of lead-related centres in single crystalline films of Lu2SiO5. J Phys D Appl Phys 45:629Google Scholar
  18. 18.
    Spurrier MA, Szupryczynski P, Rothfuss H et al (2008) The effect of co-doping on the growth stability and scintillation properties of lutetium oxyorthosilicate. J Cryst Growth 310:2110CrossRefGoogle Scholar
  19. 19.
    Qin LS, Ren GH, Lu S et al (2008) Influence of RE doping on the scintillation properties of LSO crystals. IEEE Trans Nucl Sci 55:1216CrossRefGoogle Scholar
  20. 20.
    Chen R (1969) On the calculation of activation energies and frequency factors from glow curves. J Appl Phys 40:570CrossRefGoogle Scholar
  21. 21.
    Chen R (1976) Methods for kinetic analysis of thermally stimulated processes. J Mater Sci 11:1521. CrossRefGoogle Scholar
  22. 22.
    Shockley W (1939) On the surface states associated with a periodic potential. Phys Rev 56:317CrossRefGoogle Scholar
  23. 23.
    Sidletskiy O, Vedda A, Fasoli M et al (2015) Crystal composition and afterglow in mixed silicates: the role of melting temperature. Phys Rev Appl 4:2331CrossRefGoogle Scholar
  24. 24.
    Dorenbos P, Vaneijk CWE, Bos AJJ et al (1994) Afterglow and thermoluminescence properties of Lu2SiO5: Ce scintillation crystals. J Phys-Condens Matter 6:4167CrossRefGoogle Scholar
  25. 25.
    Vedda A, Nikl M, Fasoli M et al (2008) Thermally stimulated tunneling in rare-earth-doped oxyorthosilicates. Phys Rev B 78:195123CrossRefGoogle Scholar
  26. 26.
    Gustafsson T, Klintenberg M, Derenzo SE et al (2001) Lu2SiO5 by single-crystal X-ray and neutron diffraction. Acta Crystallogr Sect C Cryst Struct Commun 57:668CrossRefGoogle Scholar
  27. 27.
    Liu B, Qi ZM, Gu M et al (2007) First-principles study of oxygen vacancies in Lu2SiO5. J Phys-Condens Matter 19:436215CrossRefGoogle Scholar
  28. 28.
    Ning LX, Lin LH, Li LL et al (2012) Electronic properties and 4f → 5d transitions in Ce-doped Lu2SiO5: a theoretical investigation. J Mater Chem 22:13723CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shanghai Institute of Ceramics, Chinese Academy of SciencesShanghaiPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.R&D center of Shanghai Institute of CeramicsShanghaiPeople’s Republic of China
  4. 4.Institute of High Energy PhysicsBeijingPeople’s Republic of China
  5. 5.Beijing Engineering Research Center of Radiographic Techniques and EquipmentBeijingPeople’s Republic of China

Personalised recommendations