Journal of Materials Science

, Volume 53, Issue 9, pp 6719–6728 | Cite as

Layer-by-layer nanostructured supercapacitor electrodes consisting of ZnO nanoparticles and multi-walled carbon nanotubes

  • Vinícius O. Fávero
  • Danilo A. Oliveira
  • Jodie L. Lutkenhaus
  • José R. SiqueiraJr.
Electronic materials


The study of nanostructures combining carbon and metal oxide materials in a synergistic way is propitious to achieve new nanocomposites with enhanced capacitive electrochemical properties for energy storage applications such as supercapacitors. Here, we investigate the electrochemical properties of electrodes containing nanostructured films made from layer-by-layer (LbL) multilayers consisting of ZnO nanoparticles (ZnONPs) complexed with polyallylamine hydrochloride (PAH) and multi-walled carbon nanotubes (MWNTs) for supercapacitor applications. The surface of PAH–ZnO/MWNT LbL films was analyzed by atomic force microscopy (AFM), which displayed a nanofilm with high superficial area and porosity due to the high interconnection of MWNTs and ZnONPs in the film’s multilayers. Cyclic voltammetry and galvanostatic charge–discharge measurements were used to evaluate the electrochemical properties of the films. A high observed areal capacitance of ca. 1000 μF/cm2 was achieved for a 10-bilayer LbL film at a current density of 1.0 × 10−5 A/cm2. Furthermore, the PAH–ZnO/MWNT LbL film exhibited a high cycling stability with a capacitive retention of 96% over 1000 cycles. These results demonstrate that the nanostructured PAH–ZnO/MWNT LbL film may be explored as supercapacitors electrodes for energy storage applications.



The authors gratefully thank the financial support to the Brazilian Foundations CAPES (Grant 88881.119924/2016-01), FAPEMIG (Grant APQ-00756-16), and Rede Mineira de Química (FAPEMIG-CEX-RED-00010-14). We also thank Anish Patel of Texas A&M University for helpful discussion, and Prof. Anielle C. A. Silva and Prof. Noelio O. Dantas of Federal University of Uberlândia for providing ZnONPs samples for this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest and no competing financial interest.


  1. 1.
    Kwon SR, Harris J, Zhou T, Loufakis D, Boyd JD, Lutkenhaus JL (2017) Mechanically strong graphene/aramid nanofiber composite electrodes for structural energy and power. ACS Nano 11:6682–6690CrossRefGoogle Scholar
  2. 2.
    Li X, Wei B (2013) Supercapacitors based on nanostructured carbon. Nano Energy 2:159–173CrossRefGoogle Scholar
  3. 3.
    Yu G, Xie X, Pan L, Bao Z, Cui Y (2013) Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2:213–234CrossRefGoogle Scholar
  4. 4.
    Zhi M, Xiang C, Li J, Li M, Wu N (2013) Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5:72–88CrossRefGoogle Scholar
  5. 5.
    Lee SW, Kim J, Chen S, Hammond PT, Shao-Horn Y (2010) Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS Nano 4:3889–3896CrossRefGoogle Scholar
  6. 6.
    Liu W, Yan X, Xue Q (2013) Multilayer hybrid films consisting of alternating graphene and titanium dioxide for high-performance supercapacitors. J Mater Chem C 1:1413–1422CrossRefGoogle Scholar
  7. 7.
    Ariga K, Minami K, Shrestha LK (2016) Nanoarchitectonics for carbon-material-based sensors. Analyst 14:2629–2638CrossRefGoogle Scholar
  8. 8.
    Oliveira ON Jr, Iost RM, Siqueira JR Jr, Crespilho FN, Caseli L (2014) Nanomaterials for diagnosis: challenges and applications in smart devices based on molecular recognition. ACS Appl Mater Interfaces 6:14745–14766CrossRefGoogle Scholar
  9. 9.
    Jeon J-W, Kwon S-R, Lutkenhaus JL (2015) polyaniline nanofiber/electrochemically reduced graphene oxide layer-by-layer electrodes for electrochemical energy storage. J Mater Chem A 3:3757–3767CrossRefGoogle Scholar
  10. 10.
    Shao L, Jeon J-W, Lutkenhaus JL (2014) Polyaniline nanofiber/vanadium pentoxide sprayed layer-by-layer electrodes for energy storage. J Mater Chem A 2:14421–14428CrossRefGoogle Scholar
  11. 11.
    Jeon J-W, O’Neal J, Shao L, Lutkenhaus JL (2013) Charge storage in polymer acid-doped polyaniline-based layer-by-layer electrodes. ACS Appl Mater Interfaces 5:10127–10136CrossRefGoogle Scholar
  12. 12.
    Ariga K, Hill JP, Ji QM (2007) Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys 9:2319–2340CrossRefGoogle Scholar
  13. 13.
    Morais PV, Gomes VF Jr, Silva ACA, Dantas NO, Schöning MJ, Siqueira JR Jr (2017) Nanofilm of ZnO nanocrystals/carbon nanotubes as biocompatible layer for enzymatic biosensors in capacitive field-effect devices. J Mater Sci 52:12314–12325. CrossRefGoogle Scholar
  14. 14.
    Kang Z, Gu Y, Yan X, Bai Z, Liu Y, Liu S, Zhang X, Zhang Z, Zhang X, Zhang Y (2015) Enhanced photoelectrochemical property of ZnO nanorods array synthesized on reduced graphene oxide for self-powered biosensing application. Biosens Bioelectron 64:499–504CrossRefGoogle Scholar
  15. 15.
    Zhang R, Xie J, Wang C, Liu J, Zheng X, Li Y, Yang X, Wang H-E, Su B-L (2017) Macroporous ZnO/ZnS/CdS composite spheres as efficient and stable photocatalysts for solar-driven hydrogen generation. J Mater Sci 52:11124–11134. CrossRefGoogle Scholar
  16. 16.
    Pelicano CM, Yanagi H (2017) Efficient solid-state perovskite solar cells based on nanostructured zinc oxide designed by strategic low temperature water oxidation. J Mater Chem C 5:8059–8070CrossRefGoogle Scholar
  17. 17.
    Xiao X, Han B, Chen G, Wang L, Wang Y (2017) Preparation and electrochemical performances of carbon sphere@ ZnO core–shell nanocomposites for supercapacitor applications. Sci Rep 7:40167. CrossRefGoogle Scholar
  18. 18.
    Sun J, Zan P, Ye L, Yang X, Zhao L (2017) Superior performance of ZnCo2O4/ZnO@ multiwall carbon nanotubes with laminated shape assembled as highly practical all-solid-state asymmetric supercapacitors. J Mater Chem A 5:9815–9823CrossRefGoogle Scholar
  19. 19.
    Madhu R, Veeramani V, Chen S-M, Veerakumar P, Liu S-B, Miyamoto N (2016) Functional porous carbon–ZnO nanocomposites for high-performance biosensors and energy storage applications. Phys Chem Chem Phys 18:16466–16475CrossRefGoogle Scholar
  20. 20.
    Ma W, Shi Q, Nan H, Hu Q, Zheng X, Geng B, Zhang X (2015) Hierarchical ZnO@MnO2@PPy ternary core–shell nanorod arrays: an efficient integration of active materials for energy storage. RSC Adv 5:39864–39869CrossRefGoogle Scholar
  21. 21.
    Aravinda LS, Nagaraja KK, Nagaraja HS, Bhat KU, Bhat BR (2013) ZnO/carbon nanotube nanocomposite for high energy density supercapacitors. Electrochim Acta 95:119–124CrossRefGoogle Scholar
  22. 22.
    Sousa CJA, Pereira MC, Almeida RJ, Loyola AM, Silva ACA, Dantas NO (2014) Synthesis and characterization of zinc oxide nanocrystals and histologic evaluation of their biocompatibility by means of intraosseous implants. Int Endod J 47:416–424CrossRefGoogle Scholar
  23. 23.
    Dantas NO, Damigo L, Qu F, Cunha JFR, Silva RS, Miranda KL, Vilela EC, Sartoratto PPC, Morais PC (2008) Raman investigation of ZnO and Zn1−xMnxO nanocrystals synthesized by precipitation method. J Non Cryst Solids 354:4827–4829CrossRefGoogle Scholar
  24. 24.
    Dantas NO, Damigo L, Qu F, Silva RS, Sartoratto PPC, Miranda KL, Vilela EC, Pelegrini F, Morais PC (2008) Structural and magnetic properties of ZnO and Zn1−xMnxO nanocrystals. J Non Cryst Solids 354:4727–4729CrossRefGoogle Scholar
  25. 25.
    Kwon SR, Elinski M, Batteas JD, Lutkenhaus JL (2017) Robust and flexible aramid nanofiber/graphene layer-by-layer electrodes. ACS Appl Mater Interfaces 9:17125–17135CrossRefGoogle Scholar
  26. 26.
    Siqueira JR Jr, Gasparotto LHS, Oliveira ON Jr, Zucolotto V (2008) Processing of electroactive nanostructured films incorporating carbon nanotubes and phthalocyanines for sensing. J Phys Chem C 112:9050–9055CrossRefGoogle Scholar
  27. 27.
    Gasparotto LHS, Castelhano ALB, Silva ACA, Dantas NO, Oliveira ON Jr, Siqueira JR Jr (2014) Dendrimer–carbon nanotube layer-by-layer film as an efficient host matrix for electrogeneration of ptco electrocatalysts. Phys Chem Chem Phys 16:2384–2389CrossRefGoogle Scholar
  28. 28.
    Gasparotto LHS, Castelhano ALB, Gabriel RC, Dantas NO, Oliveira ON Jr, Siqueira JR Jr (2013) Electrogeneration of platinum nanoparticles in a matrix of dendrimer/carbon nanotubes. Phys Chem Chem Phys 15:17887–17892CrossRefGoogle Scholar
  29. 29.
    Siqueira JR Jr, Gabriel RC, Zucolotto V, Silva ACA, Dantas NO, Gasparotto LHS (2012) Electrodeposition of catalytic and magnetic gold nanoparticles on dendrimer–carbon nanotube layer-by-layer films. Phys Chem Chem Phys 14:14340–14343CrossRefGoogle Scholar
  30. 30.
    Siqueira JR Jr, Molinnus D, Beging S, Schöning MJ (2014) Incorporating a hybrid urease–carbon nanotubes sensitive nanofilm on capacitive field-effect sensors for urea detection. Anal Chem 86:5370–5375CrossRefGoogle Scholar
  31. 31.
    Siqueira JR Jr, Werner CF, Bäcker M, Poghossian A, Zucolotto V, Oliveira ON Jr, Schöning MJ (2009) Layer-by-layer assembly of carbon nanotubes incorporated in light-addressable potentiometric sensors. J Phys Chem C 113:14765–14770CrossRefGoogle Scholar
  32. 32.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRefGoogle Scholar
  33. 33.
    Yoo JJ, Balakrishnan K, Huang JS, Meunier V, Sumpter BG, Srivastava A, Conway M, Reddy ALM, Yu J, Vajtai R, Ajayan PM (2011) Ultrathin planar graphene supercapacitors. Nano Lett 11:1423–1427CrossRefGoogle Scholar
  34. 34.
    Yu D, Dai L (2010) Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett 1:467–470CrossRefGoogle Scholar
  35. 35.
    Zhang Y, Li H, Pan L, Lu T, Sun Z (2009) Capacitive behavior of graphene–ZnO composite film for supercapacitors. J Electroanal Chem 634:68–71CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Exact Sciences, Natural and EducationFederal University of Triângulo Mineiro (UFTM)UberabaBrazil
  2. 2.Artie McFerrin Department of Chemical EngineeringTexas A&M UniversityCollege StationUSA
  3. 3.Department of Materials Science and EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations