Skip to main content
Log in

Molybdenum nitrides: a study of synthesis variables and catalytic performance in acetylene hydrogenation

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We have examined the catalytic action of β- and γ-Mo2N in the partial hydrogenation of acetylene. The influence of variations in GHSV (230–1600 min−1), feed composition (5–30% v/v N2/H2), heating rate (0.1–5 K min−1) and isothermal hold (1–7 h at 933 K) on nitride structural properties has been assessed. At ≥ 2 K min−1, β-Mo2N (≤ 15 m2 g−1) consisting of small crystallites (< 5 μm) was generated. At ≤ 0.5 K min−1, γ-Mo2N with a platelet morphology and surface area ≥ 45 m2 g−1 was formed. High GHSV, low N2 feed content and a prolonged isothermal hold served to increase γ-Mo2N area (to 135 m2 g−1). Lower alkene selectivity and a twofold higher specific (per m2) acetylene hydrogenation rate were recorded for β-Mo2N and linked to higher surface Mo/N ratio (from XPS). Olefin selectivity for both nitrides was greater than that reported for Pd catalysts. Moreover, we recorded negligible green oil formation in reactions over γ-Mo2N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Scheme 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Furimsky E (2003) Metal carbides and nitrides as potential catalysts for hydroprocessing. Appl Catal A Gen 240:1–28

    CAS  Google Scholar 

  2. Guerrero-Ruiz A, Zhang Y, Bachiller-Baeza B, Rodríguez-Ramos I (1998) Hydrogenation of crotonaldehyde over carbon-supported molybdenum nitrides. Catal Lett 55:165–168

    CAS  Google Scholar 

  3. Cárdenas-Lizana F, Lamey D, Perret N, Gómez-Quero S, Kiwi-Minsker L, Keane MA (2012) Au/Mo2N as a new catalyst formulation for the hydrogenation of p-chloronitrobenzene in both liquid and gas phases. Catal Commun 21:46–51

    Google Scholar 

  4. Hargreaves JSJ (2013) Heterogeneous catalysis with metal nitrides. Coord Chem Rev 257:2015–2031

    CAS  Google Scholar 

  5. Mckay D, Hargreaves JSJ, Rico JL, Rivera JL, Sun X-L (2008) The influence of phase and morphology of molybdenum nitrides on ammonia synthesis activity and reduction characteristics. J Solid State Chem 181:325–333

    CAS  Google Scholar 

  6. Nagai M, Goto Y, Miyata A, Kiyoshi M, Hada K, Oshikawa K, Omi S (1999) Temperature-programmed reduction and XRD studies of ammonia-treated molybdenum oxide and its activity for carbazole hydrodenitrogenation. J Catal 182:292–301

    CAS  Google Scholar 

  7. Perret N, Cárdenas-Lizana F, Lamey D, Laporte V, Kiwi-Minsker L, Keane MA (2012) Effect of crystallographic phase (β vs. γ) and surface area on gas phase nitroarene hydrogenation over Mo2N and Au/Mo2N. Top Catal 55:955–968

    CAS  Google Scholar 

  8. Cárdenas-Lizana F, Gómez-Quero S, Perret N, Kiwi-Minsker L, Keane MA (2011) β-Molybdenum nitride: synthesis mechanism and catalytic response in the gas phase hydrogenation of p-chloronitrobenzene. Catal Sci Technol 1:794–801

    Google Scholar 

  9. Cairns AG, Gallagher JG, Hargreaves JSJ, McKay D, Rico JL, Wilson K (2010) The effect of low levels of dopants upon the formation and properties of beta-phase molybdenum nitride. J Solid State Chem 183:613–619

    CAS  Google Scholar 

  10. Jujjuri S, Cárdenas-Lizana F, Keane MA (2014) Synthesis of group VI carbides and nitrides: application in catalytic hydrodechlorination. J Mater Sci 49:5406–5417. https://doi.org/10.1007/s10853-014-8252-x

    Article  CAS  Google Scholar 

  11. Cairns AG, Gallagher JG, Hargreaves JSJ, Mckay D, Morrison E, Rico JL, Wilson K (2009) The influence of precursor source and thermal parameters upon the formation of beta-phase molybdenum nitride. J Alloys Compd 479:851–854

    CAS  Google Scholar 

  12. Choi J-G, Curl RL, Thompson LT (1994) Molybdenum nitride catalysts. I. Influence of the synthesis factors on structural properties. J Catal 146:218–227

    CAS  Google Scholar 

  13. Markel EJ, Burdick SE, Leaphart ME II, Roberts KL (1999) Synthesis, characterization, and thiophene desulfurization activity of unsupported γ-Mo2N macrocrystalline catalysts. J Catal 182:136–147

    CAS  Google Scholar 

  14. Zhivonitko VV, Skovpin IV, Crespo-Quesada M, Kiwi-Minsker L, Koptyug IV (2016) Acetylene oligomerization over Pd nanoparticles with controlled shape: a parahydrogen-induced polarization study. J Phys Chem C 120:4945–4953

    CAS  Google Scholar 

  15. Larsson M, Jansson J, Asplund S (1998) The role of coke in acetylene hydrogenation on Pd/α-Al2O3. J Catal 178:49–57

    CAS  Google Scholar 

  16. Ahn IY, Lee JH, Kum SS, Moon SH (2007) Formation of C4 species in the deactivation of a Pd/SiO2 catalyst during the selective hydrogenation of acetylene. Catal Today 123:151–157

    CAS  Google Scholar 

  17. Yang B, Burch R, Hardacre C, Hu P, Hughes P (2014) Mechanistic study of 1,3-butadiene formation in acetylene hydrogenation over the Pd-based catalysts using density functional calculations. J Phys Chem C 118:1560–1567

    CAS  Google Scholar 

  18. Larsson M, Jansson J, Asplund S (1996) Incorporation of deuterium in coke formed on an acetylene hydrogenation catalyst. J Catal 162:365–367

    CAS  Google Scholar 

  19. Hao ZX, Wei ZB, Wang LJ, Li XH, Li C, Min EZ, Xin Q (2000) Selective hydrogenation of ethyne on γ-Mo2N. Appl Catal A Gen 192:81–84

    CAS  Google Scholar 

  20. Cárdenas-Lizana F, Crespo-Quesada M, Kiwi-Minsker L (2012) Selective alkyne hydrogenation over nano-metal systems: closing the gap between model and real catalysts for industrial applications. Chimia 66:681–686

    Google Scholar 

  21. Pachulski A, Schödel R, Claus P (2011) Performance and regeneration studies of Pd-Ag/Al2O3 catalysts for the selective hydrogenation of acetylene. Appl Catal A Gen 400:14–24

    CAS  Google Scholar 

  22. Lamey D, Prokopyeva I, Cárdenas-Lizana F, Kiwi-Minsker L (2014) Impact of organic-ligand shell on catalytic performance of colloids for alkyne gas-phase hydrogenation. Catal Today 235:79–89

    CAS  Google Scholar 

  23. Bartholomew CH (2001) Mechanisms of catalyst deactivation. Appl Catal A Gen 212:17–60

    CAS  Google Scholar 

  24. Crespo-Quesada M, Cárdenas-Lizana F, Dessimoz A-L, Kiwi-Minsker L (2012) Modern trends in catalyst and process design for alkyne hydrogenations. ACS Catal 2:1773–1786

    CAS  Google Scholar 

  25. McCue AJ, Anderson JA (2015) Recent advances in selective acetylene hydrogenation using palladium containing catalysts. Front Chem Sci Eng 9:142–153

    CAS  Google Scholar 

  26. Fransen T, Berge PC, Mars P (1976) Reduced molybdenum oxide catalysts with high surface areas. Preparation and activities. React Kinet Catal Lett 5:445–452

    CAS  Google Scholar 

  27. Quincy RB, Houalla M, Proctor A, Hercules DM (1990) Distribution of molybdenum oxidation states in reduced Mo/TiO2 catalysts: correlation with benzene hydrogenation activity. J Phys Chem 94:1520–1526

    CAS  Google Scholar 

  28. Ruta M, Semagina N, Kiwi-Minsker L (2008) Monodispersed Pd nanoparticles for acetylene selective hydrogenation: particle size and support effects. J Phys Chem C 112:13635–13641

    CAS  Google Scholar 

  29. Jauberteau I, Mayet R, Cornette J, Bessaudou A, Carles P, Jauberteau J-L, Merle-Méjean T (2015) A reduction–nitridation process of molybdenum films in expanding microwave plasma: crystal structure of molybdenum nitrides. Surf Coat Technol 270:77–85

    CAS  Google Scholar 

  30. Pande P, Deb A, Sleightholme AES, Djire A, Rasmussen PG, Penner-Hahn J, Thompson LT (2015) Pseudocapacitive charge storage via hydrogen insertion for molybdenum nitrides. J Power Sources 289:154–159

    CAS  Google Scholar 

  31. Jaggers CH, Michaels JN, Stacy AM (1990) Preparation of high-surface-area transition-metal nitrides: Mo2N and MoN. Chem Mater 2:150–157

    CAS  Google Scholar 

  32. Dewangan K, Patil SS, Joag DS, More MA, Gajbhiye NS (2010) Topotactical nitridation of α-MoO3 fibers to γ-Mo2N fibers and its field emission properties. J Phys Chem C 114:14710–14715

    CAS  Google Scholar 

  33. Sha X, Chen L, Cooper AC, Pez GP, Cheng H (2009) Hydrogen absorption and diffusion in bulk α-MoO3. J Phys Chem C 113:11399–11407

    CAS  Google Scholar 

  34. Zeng HC, Ng WK, Cheong LH, Xie F, Xu R (2001) Insertion direction of hydrogen in protonation of α-MoO3. J Phys Chem B 105:7178–7181

    CAS  Google Scholar 

  35. Birtill JJ, Dickens PG (1979) Thermochemistry of hydrogen molybdenum bronze phases HXMoO3. J Solid State Chem 29:367–372

    CAS  Google Scholar 

  36. Volpe L, Boudart M (1985) Compounds of molybdenum and tungsten with high specific surface area: I. nitrides. J Solid State Chem 59:332–347

    CAS  Google Scholar 

  37. Ji W, Shen R, Yang R, Yu G, Guo X, Peng L, Ding W (2014) Partially nitrided molybdenum trioxide with promoted performance as an anode material for lithium-ion batteries. J Mater Chem A 2:699–704

    CAS  Google Scholar 

  38. Jauberteau I, Bessaudou A, Mayet R, Cornette J, Jauberteau J, Carles P, Merle-Méjean T (2015) Molybdenum nitride films: crystal structures, synthesis, mechanical, electrical and some other properties. Coatings 5:656–687

    CAS  Google Scholar 

  39. Roberts KL, Markel EJ (1994) Generation of Mo2N nanoparticles from topotactic Mo2N crystallites. J Phys Chem 98:4083–4086

    CAS  Google Scholar 

  40. Ikhlaq U, Ahmad R, Shafiq M, Saleem S, Shah MS, Hussain T, Khan IA, Abbas K, Abbas MS (2014) Nitriding molybdenum: effects of duration and fill gas pressure when using 100-Hz pulse DC discharge technique. Chin Phys B 23:1052031–1052038

    Google Scholar 

  41. Schulmeyer WV, Ortner HM (2002) Mechanisms of the hydrogen reduction of molybdenum oxides. Int J Refract Hard Mater 20:261–269

    CAS  Google Scholar 

  42. Oyama ST (1996) The chemistry of transition metal carbides and nitrides, vol 1, 1st edn. Blackie Academic, Glasgow

    Google Scholar 

  43. Ogi T, Kaihatsu Y, Iskandar F, Tanabe E, Okuyama K (2009) Synthesis of nanocrystalline GaN from Ga2O3 nanoparticles derived from salt-assisted spray pyrolysis. Adv Powder Technol 20:29–34

    CAS  Google Scholar 

  44. Wise RS, Markel EJ (1994) Synthesis of high surface area molybdenum nitride in mixtures of nitrogen and hydrogen. J Catal 145:344–355

    CAS  Google Scholar 

  45. Fuertes A (2015) Metal oxynitrides as emerging materials with photocatalytic and electronic properties. Mater Horiz 2:453–461

    CAS  Google Scholar 

  46. Sakagami H, Asano Y, Takahashi N, Matsuda T (2005) H2 reduction of hydrogen molybdenum bronze to porous molybdenum oxide and its catalytic properties for the conversions of pentane and propan-2-ol. Appl Catal A Gen 284:123–130

    CAS  Google Scholar 

  47. Büchele W, Roos H, Wanjek H, Müller HJ (1996) Catalyst research—one of the cornerstones of modern chemical production. Catal Today 30:33–39

    Google Scholar 

  48. Jaf ZN, Altarawneh M, Miran HA, Jiang Z-T, Dlugogorski BZ (2017) Mechanisms governing selective hydrogenation of acetylene over γ-Mo2N surfaces. Catal Sci Technol 7:943–960

    CAS  Google Scholar 

  49. Bridier B, Pérez-Ramírez J (2010) Cooperative effects in ternary Cu–Ni–Fe catalysts lead to enhanced alkene selectivity in alkyne hydrogenation. J Am Chem Soc 132:4321–4327

    CAS  Google Scholar 

  50. Lee DK (1990) Green-oil formation and selectivity change in selective hydrogenation on titania-supported and unsupported palladium catalyst for acetylene removal from ethylene-rich stream. Korean J Chem Eng 7:233–235

    CAS  Google Scholar 

  51. Hartog AJD, Deng M, Jongerius F, Ponec V (1990) Hydrogenation of acetylene over various group VIII metals: effect of particle size and carbonaceous deposits. J Mol Catal 60:99–108

    Google Scholar 

  52. Zhang J, Sui Z, Zhu Y-A, Chen D, Zhou X, Yuan W (2016) Composition of the green oil in hydrogenation of acetylene over a commercial Pd-Ag/Al2O3 catalyst. Chem Eng Technol 39:865–873

    CAS  Google Scholar 

  53. Zhou G, Wang P, Jiang Z, Ying P, Li C (2011) Selective hydrogenation of acetylene over a MoP catalyst. Chin J Catal 32:27–30

    Google Scholar 

  54. Yajun L, Jing Z, Xueru M (1982) Formation of polymers during the hydrogenation of acetylene in ethylene–ethane fraction. In: AIChE (ed) Joint meeting of chemical engineering, Beijing, China. Chemical Industry Press, Beijing, p 926

  55. Prins R (2012) Hydrogen spillover. Facts and fiction. Chem Rev 112:2714–2738

    CAS  Google Scholar 

  56. Zhang YJ, Li YX, Li C, Xin Q (1997) Adsorption and migration of Hydrogen on different surface sites of γ-Mo2N catalyst. Spillover and migration of surface species on catalysis, vol 112, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  57. Nagai M, Goto Y, Uchino O, Omi S (1998) TPD study and carbozole hydrodenitrogenation activity of nitrided molybdena–alumina. Catal Today 45:335–340

    CAS  Google Scholar 

  58. Li XS, Chen YX, Zhang YJ, Ji CX, Xin Q (1996) Temperature-programmed desorption and adsorption of hydrogen on Mo2N. React Kinet Catal Lett 58:391–396

    CAS  Google Scholar 

  59. Li XS, Zhang YJ, Xin Q, Ji CX, Miao YF, Wang L (1996) Irreversible hydrogen uptake on Mo2N catalyst. React Kinet Catal Lett 57:177–182

    CAS  Google Scholar 

  60. Nagai M, Goto Y, Uchino O, Omi S (1998) TPD and XRD studies of molybdenum nitride and its activity for hydrodenitrogenation of carbazole. Catal Today 43:249–259

    CAS  Google Scholar 

  61. Vilé G, Albani D, Almora-Barrios N, López N, Pérez-Ramírez J (2016) Advances in the design of nanostructured catalysts for selective hydrogenation. ChemCatChem 8:21–33

    Google Scholar 

Download references

Acknowledgements

Financial support from the Swiss National Science Foundation and the Russian Science Foundation (Project 15-19-20023) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Cárdenas-Lizana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cárdenas-Lizana, F., Lamey, D., Kiwi-Minsker, L. et al. Molybdenum nitrides: a study of synthesis variables and catalytic performance in acetylene hydrogenation. J Mater Sci 53, 6707–6718 (2018). https://doi.org/10.1007/s10853-018-2009-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2009-x

Navigation