Advertisement

Journal of Materials Science

, Volume 53, Issue 9, pp 6807–6818 | Cite as

Facile synthesis of cuboid Ni-MOF for high-performance supercapacitors

  • Shuwen Gao
  • Yanwei Sui
  • Fuxiang Wei
  • Jiqiu Qi
  • Qingkun Meng
  • Yezeng He
Energy materials

Abstract

Metal–organic frameworks (MOF) used directly in supercapacitors have attracted much attention for their special porous structure and potential high performance. Here, the Ni-MOF is fabricated by one-step facile hydrothermal method with a modification of mixed solution with DMF and water instead of pure DMF. After characterization, the Ni-MOF exhibits loosely stacked layer-cuboid structure with abundant mesoporous, which is beneficial for the charge transfer and ion transport for supercapacitors. In the three-electrode system, this Ni-MOF serving as working electrode shows remarkable specific capacitance of 804 Fg−1 at 1 Ag−1, excellent rate capacitance of 534 Fg−1 at 10 Ag−1, and with 302 Fg−1 retention after 5000 cycles, when measured in 2 M KOH electrolyte solution. To make a further research into the practical utility of the Ni-MOF, the Ni-MOF//AC asymmetrical supercapacitor device is assembled with the Ni-MOF and active carbon acted as positive and negative electrode materials, respectively. This device exhibits high specific energy of 31.5 Wh kg−1, at specific power of 800 W kg−1. All these results demonstrate that this Ni-MOF is a kind of promising electrode material for high-performance supercapacitors.

Notes

Acknowledgements

The authors would like to acknowledge the support by the National Natural Science Foundation of China (Grant No. 51501221) and the China Postdoctoral Science Foundation (No. 2016M591954).

References

  1. 1.
    Lee DY, Yoon SJ, Shrestha NK, Lee S, Ahn H, Han S (2012) Unusual energy storage and charge retention in Co-based metal–organic-frameworks. Microporous Mesoporous Mater 153:163–165CrossRefGoogle Scholar
  2. 2.
    Jiao Y, Pei J, Chen D, Yan C, Hu Y, Zhang Q, Chen G (2017) Mixed-metallic MOFs based electrode materials for high performance hybrid supercapacitors. J Mater Chem A 5(3):1094–1102CrossRefGoogle Scholar
  3. 3.
    Elsayed A, Elsayed E, Al-Dadah R, Mahmoud S, Elshaer A, Kaialy W (2017) Thermal energy storage using metal–organic framework materials. Appl Energy 186(SI3):509–519CrossRefGoogle Scholar
  4. 4.
    Xu X, Cao R, Jeong S, Cho J (2012) Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett 12(9):4988–4991CrossRefGoogle Scholar
  5. 5.
    Naoi K, Naoi W, Aoyagi S, Miyamoto J, Kamino T (2013) New generation “Nanohybrid Supercapacitor”. Acc Chem Res 46(5):1075–1083CrossRefGoogle Scholar
  6. 6.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845CrossRefGoogle Scholar
  7. 7.
    Liu W, Yin X (2016) Metal–organic frameworks for electrochemical applications. TrAC Trends Anal Chem 75(11):86–96CrossRefGoogle Scholar
  8. 8.
    Cao X, Shi Y, Shi W, Lu G, Huang X (2011) Preparation of novel 3D graphene networks for supercapacitor applications. Small 22(7):3163CrossRefGoogle Scholar
  9. 9.
    Li G, Liu P, Liu R, Liu M, Tao K, Zhu S, Wu M, Yi F, Han L (2016) MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitor. Dalton Trans 45(34):13311–13316CrossRefGoogle Scholar
  10. 10.
    Wang K, Song Y, Yan R, Zhao N, Tian X (2017) High capacitive performance of hollow activated carbon fibers derived from willow catkins. Appl Surf Sci 394:569–577CrossRefGoogle Scholar
  11. 11.
    Wang L, Feng X, Ren L, Piao Q, Zhong J, Wang Y, Li H, Chen Y, Wang B (2015) Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI. J Am Chem Soc 137(15):4920–4923CrossRefGoogle Scholar
  12. 12.
    Sun Z, Huang F, Sui Y, Wei F, Qi J, Meng Q, Hu H, He Y (2017) Cobalt oxide composites derived from zeolitic imidazolate on carbon fiber paper as a binder-free anode for supercapacitor. J Mater Sci Mater Electron 28(18):14019–14025CrossRefGoogle Scholar
  13. 13.
    Wen P, Gong P, Sun J, Wang J, Yang S (2015) Design and synthesis of Ni-MOF/CNTs composites and rGO/Carbon nitride composites for an asymmetric supercapacitor with high energy and power density. J Mater Chem A 3(26):13874–13883CrossRefGoogle Scholar
  14. 14.
    Huang F, Yan A, Sui Y, Wei F, Qi J, Meng Q, He Y (2017) One-step hydrothermal synthesis of Ni3S4@MoS2 nanosheet on carbon fiber paper as a binder-free anode for supercapacitor. J Mater Sci Mater Electron 28(17):12747–12754CrossRefGoogle Scholar
  15. 15.
    Furukawa H, Yaghi OM (2013) The chemistry and applications of metal–organic frameworks. Science 341(6149):1230444CrossRefGoogle Scholar
  16. 16.
    Abbasi Z, Shamsaei E, Leong SK, Ladewig B, Zhang X (2016) Effect of carbonization temperature on adsorption property of ZIF-8 derived nanoporous carbon for water treatment. Microporous Mesoporous Mater 236:28–37CrossRefGoogle Scholar
  17. 17.
    Bai F, Xia Y, Chen B, Su H, Zhu Y (2014) Preparation and carbon dioxide uptake capacity of N-doped porous carbon materials derived from direct carbonization of zeolitic imidazolate framework. Carbon 79:213–226CrossRefGoogle Scholar
  18. 18.
    Noguera-Diaz A, Bimbo N, Holyfield LT, Ahmet IY, Ting VP, Mays TJ (2016) Structure-property relationships in metal–organic frameworks for hydrogen storage. Colloids Surf A 496:77–85CrossRefGoogle Scholar
  19. 19.
    Yang Jiao GCDC (2017) Bimetal–organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage. J Mater Chem A 5:23744–23752CrossRefGoogle Scholar
  20. 20.
    Zhou Y, Mao Z, Wang W, Yang Z, Liu X (2016) In-situ fabrication of graphene oxide hybrid Ni-based metal–organic framework (Ni-MOFs@GO) with ultrahigh capacitance as electrochemical pseudocapacitor materials. ACS Appl Mater Interfaces 8(42):28904–28916CrossRefGoogle Scholar
  21. 21.
    Qu C, Jiao Y, Zhao B, Chen D, Zou R, Walton KS, Liu M (2016) Nickel-based pillared MOFs for high-performance supercapacitors: design, synthesis and stability study. Nano Energy 26:66–73CrossRefGoogle Scholar
  22. 22.
    Miles DO, Jiang D, Burrows AD, Halls JE, Marken F (2013) Conformal transformation of [Co(bdc)(DMF)] (Co-MOF-71, bdc = 1,4-benzenedicarboxylate, DMF = N, N-dimethylformamide) into porous electrochemically active cobalt hydroxide. Electrochem Commun 27:9–13CrossRefGoogle Scholar
  23. 23.
    Yan Y, Gu P, Zheng S, Zheng M, Pang H, Xue H (2016) Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. J Mater Chem A 4(48):19078–19085CrossRefGoogle Scholar
  24. 24.
    Wu M, Hsu W (2015) Nickel nanoparticles embedded in partially graphitic porous carbon fabricated by direct carbonization of nickel-organic framework for high-performance supercapacitors. J Power Sources 274:1055–1062CrossRefGoogle Scholar
  25. 25.
    Young C, Salunkhe RR, Tang J, Hu C, Shahabuddin M, Yanmaz E, Hossain MSA, Kim JH, Yamauchi Y (2016) Zeolitic imidazolate framework (ZIF-8) derived nanoporous carbon: the effect of carbonization temperature on the supercapacitor performance in an aqueous electrolyte. Phys Chem Chem Phys 18(42):29308–29315CrossRefGoogle Scholar
  26. 26.
    Xia W, Mahmood A, Zou R, Xu Q (2015) Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ Sci 8(7):1837–1866CrossRefGoogle Scholar
  27. 27.
    Jiao Y, Pei J, Yan C, Chen D, Hu Y, Chen G (2016) Layered nickel metal-organic framework for high performance alkaline battery-supercapacitor hybrid deceives. J Mater Chem A 4(34):13344–13351CrossRefGoogle Scholar
  28. 28.
    Jasuja H, Jiao Y, Burtch NC, Huang Y, Walton KS (2014) Synthesis of cobalt-, nickel-, copper-, and zinc-based, water-stable, pillared metal–organic frameworks. Langmuir 30(47):14300–14307CrossRefGoogle Scholar
  29. 29.
    Yang J, Xiong P, Zheng C, Qiu H, Wei M (2014) Metal–organic frameworks: a new promising class of materials for a high performance supercapacitor electrode. J Mater Chem A 2(39):16640–16644CrossRefGoogle Scholar
  30. 30.
    Brozek CK, Dinc M (2014) Cation exchange at the secondary building units of metal–organic frameworks. Chem Soc Rev 43(16):5456–5467CrossRefGoogle Scholar
  31. 31.
    Torad NL, Hu M, Kamachi Y, Takai K, Imura M (2013) Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals. Chem Commun 49(25):2521–2523CrossRefGoogle Scholar
  32. 32.
    Yue M, Jiang Y, Zhang L, Yu C, Zou K, Li Z (2017) Solvent-Induced Cadmium(II) metal–organic frameworks with adjustable guest-evacuated porosity: application in the controllable assembly of MOF-derived porous carbon materials for supercapacitors. Chem A Eur J 23(62):15680–15693CrossRefGoogle Scholar
  33. 33.
    Wang T, Zhou Q, Wang X, Zheng J, Li X (2015) MOF-derived surface modified Ni nanoparticles as an efficient catalyst for the hydrogen evolution reaction. J Mater Chem A 3(32):16435–16439CrossRefGoogle Scholar
  34. 34.
    Ma X, Zhang L, Xu G, Zhang C, Song H, He Y, Zhang C, Jia D (2017) Facile synthesis of NiS hierarchical hollow cubes via Ni formate frameworks for high performance supercapacitors. Chem Eng J 320:22–28CrossRefGoogle Scholar
  35. 35.
    Li Z, Yu X, Gu A, Tang H, Wang L (2017) Anion exchange strategy to synthesis of porous NiS hexagonal nanoplates for supercapacitors. Nanotechnology 28(6):65406CrossRefGoogle Scholar
  36. 36.
    Kim S, Lee J, Ahn H, Song H, Jang J (2013) Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology. ACS Appl Mater Interfaces 5(5):1596–1603CrossRefGoogle Scholar
  37. 37.
    Li Z, Han J, Fan L, Wang M, Tao S, Guo R (2015) The anion exchange strategy towards mesoporous α-Ni(OH)2 nanowires with multinanocavities for high-performance supercapacitors. Chem Commun 51(15):3053–3056CrossRefGoogle Scholar
  38. 38.
    Han Y, Zhang S, Shen N, Li D, Li X (2017) MOF-derived porous NiO nanoparticle architecture for high performance supercapacitors. Mater Lett 188:1–4CrossRefGoogle Scholar
  39. 39.
    Gund GS, Dubal DP, Shinde SS, Lokhande CD (2014) Architectured morphologies of chemically prepared NiO/MWCNTs nanohybrid thin films for high performance supercapacitors. ACS Appl Mater Interfaces 6(5):3176CrossRefGoogle Scholar
  40. 40.
    Zhang D, Zhou X, Ye K, Li Y, Song C, Cheng K, Cao D, Wang G, Li Q (2015) Synthesis of honeycomb-like NiS2/NiO nano-multiple materials for high performance supercapacitors. Electrochim Acta 173:209–214CrossRefGoogle Scholar
  41. 41.
    Senthilkumar V, Kadumudi FB, Nhu TH, Kim J, Park S, Bae J, Choi WM, Cho S, Kim YS (2016) NiO nanoarrays of a few atoms thickness on 3D nickel network for enhanced pseudocapacitive electrode applications. J Power Sources 303:363–371CrossRefGoogle Scholar
  42. 42.
    Yi H, Wang H, Jing Y, Peng T, Wang X (2015) Asymmetric supercapacitors based on carbon nanotubes@NiO ultrathin nanosheets core-shell composites and MOF-derived porous carbon polyhedrons with super-long cycle life. J Power Sources 285:281–290CrossRefGoogle Scholar
  43. 43.
    Kang L, Sun SX, Kong LB, Lang JW, Luo YC (2014) Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors. Chin Chem Lett 25(6):957–961CrossRefGoogle Scholar
  44. 44.
    He S, Li Z, Wang J, Wen P, Gao J, Ma L, Yang Z, Yang S (2016) MOF-derived NixCo1 − x(OH)2 composite microspheres for high-performance supercapacitors. Rsc Adv 6(55):49478–49486CrossRefGoogle Scholar
  45. 45.
    Niu L, Li Z, Xu Y, Sun J, Hong W, Liu X, Wang J, Yang S (2013) Simple synthesis of amorphous NiWO4 nanostructure and its application as a novel cathode material for asymmetric supercapacitors. Appl Mater Interfaces 5(16):8044CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringChina University of Mining and TechnologyXuzhouPeople’s Republic of China

Personalised recommendations