Journal of Materials Science

, Volume 53, Issue 9, pp 6339–6349 | Cite as

Investigation on electrical transport properties of nanocrystalline WO3 under high pressure

  • Yuqiang Li
  • Yang Gao
  • Cailong Liu
  • Yonghao Han
  • Qinglin Wang
  • Yan Li
  • Pingfan Ning
  • Pingjuan Niu
  • Yanzhang Ma
  • Chunxiao Gao


The electrical transport properties of nanocrystalline tungsten trioxides (WO3) under high pressures have been investigated by various electrical measurements up to 36.5 GPa. The discontinuous changes in direct-current resistivity under high pressures result from two electronic phase transitions at 4.3 and 10.5 GPa and two structural phase transitions at 24.8 and 31.6 GPa. Hall-effect measurement shows that the nanocrystalline WO3 is n-type semiconductor within the whole investigated pressure range. The carrier concentration decreases monotonously with increasing pressure, but mobility increases first and then decreases at 10.4 GPa. Through alternate-current impedance measurement, it can be found that the variation of the ratio of grain boundary resistance to grain resistance synchronizes with that of the mobility under high pressures, indicating that the grain boundary plays more important role in the carrier transport process of nanocrystalline WO3. The discontinuous changes of resistance and relaxation frequency of grain and grain boundary also provide the evidence for electronic phase transitions.



This work was supported by the National Natural Science Foundation of China (Grant Nos. 11674404, 11374121, 11404133, 11774126, 11604133, 61605145 and 61504093), the Open Project of State Key Laboratory of Superhard Materials (Jilin University) (Grant No. 201709) and the Tianjin Basic Science Foundation (Tianjin Polytechnic University) (Grant No. TJPUZK20170203), the Initial Foundation for Doctor Program of Tianjin Polytechnic University (Grant No. 030562) and Tianjin Research Program of Application Foundation and Advanced Technology (Grant Nos. 15JCQNJC41800 and 13JCYBJC37800).

Supplementary material

10853_2018_2001_MOESM1_ESM.doc (602 kb)
Supplementary material 1 (DOC 602 kb)


  1. 1.
    Zhu Z, Sarker P, Zhao C, Zhou L, Grimm RL, Huda MN, Rao PM (2017) Photoelectrochemical properties and behavior of α-SnWO4 photoanodes synthesized by hydrothermal conversion of WO3 films. ACS Appl Mater Interfaces 9:1459–1470CrossRefGoogle Scholar
  2. 2.
    Zhu J, Vasilopoulou M, Davazoglou D, Kennou S, Chroneos A, Schwingenschlög U (2017) Intrinsic defects and H doping in WO3. Sci Rep 7:40882CrossRefGoogle Scholar
  3. 3.
    DePuccio DP, Ruíz-Rodríguez L, Rodríguez-Castellón E, Botella P, López Nieto JM, Landry CC (2016) Investigating the influence of Au nanoparticles on porous SiO2–WO3 and WO3 methanol transformation catalysts. J Phys Chem C 120:27954–27963CrossRefGoogle Scholar
  4. 4.
    Zheng F, Lu H, Guo M, Zhang M, Zhen Q (2015) Hydrothermal preparation of WO3 nanorod array and ZnO nanosheet array composite structures on FTO substrates with enhanced photocatalytic properties. J Mater Chem C 3:7612–7620CrossRefGoogle Scholar
  5. 5.
    Vuong N, Hieu H, Kim D (2013) An edge-contacted pn-heterojunction of a p-SWCNT/n-WO3 thin film. J Mater Chem C 1:5153–5160CrossRefGoogle Scholar
  6. 6.
    Gouma PI, Kalyanasundaram K (2008) A selective nanosensing probe for nitric oxide. Appl Phys Lett 93:244102CrossRefGoogle Scholar
  7. 7.
    Zhang Y, Lee SH, Mascarenhas A, Deb SK (2008) An UV photochromic memory effect in proton-based WO3 electrochromic devices. Appl Phys Lett 93:203508CrossRefGoogle Scholar
  8. 8.
    Lu DY, Chen J, Chen HJ, Gong J, Deng SZ, Xu NS, Liu YL (2007) Raman study of thermochromic phase transition in tungsten trioxide nanowires. Appl Phys Lett 90:041919CrossRefGoogle Scholar
  9. 9.
    Huelser TP, Lorke A, Ifeacho P, Wiggers H, Schulz C (2007) Core and grain boundary sensitivity of tungsten-oxide sensor devices by molecular beam assisted particle deposition. J Appl Phys 102:124305CrossRefGoogle Scholar
  10. 10.
    Ramana CV, Utsunomiya S, Ewing RC, Julien CM, Becker U (2006) Structural stability and phase transitions in WO3 thin films. J Phys Chem B 110:10430–10435CrossRefGoogle Scholar
  11. 11.
    Choi J, Sudhagar P, Kim JH, Kwon J, Kim J, Terashima C, Fujishima A, Song T, Paik U (2017) WO3/W: BiVO4/BiVO4 graded photoabsorber electrode for enhanced photoelectrocatalytic solar light driven water oxidation. Phys Chem Chem Phys 19:4648–4655CrossRefGoogle Scholar
  12. 12.
    Dalavi DS, Devan RS, Patil RA, Patil RS, Ma Y, Sadale SB, Kim IY, Kim J, Patil PS (2013) Efficient electrochromic performance of nanoparticulate WO3 thin films. J Mater Chem C 1:3722–3728CrossRefGoogle Scholar
  13. 13.
    Gullapalli SK, Vemuri RS, Ramana CV (2010) Structural transformation induced changes in the optical properties of nanocrystalline tungsten oxide thin film. Appl Phys Lett 96:171903CrossRefGoogle Scholar
  14. 14.
    Wang SJ, Lu WJ, Cheng G, Cheng K, Jiang XH, Du ZL (2009) Electronic transport property of single-crystalline hexagonal tungsten trioxide nanowires. Appl Phys Lett 94:263106CrossRefGoogle Scholar
  15. 15.
    Wang L, Cheng S, Wu C, Pei K, Song Y, Li H, Wang Q, Sang D (2017) Fabrication and high temperature electronic behaviors of n-WO3 nanorods/p-diamond heterojunction. Appl Phys Lett 110:052101CrossRefGoogle Scholar
  16. 16.
    Doudin N, Kuhness D, Blatnik M, Barcaro G, Negreiros FR, Sementa L, Fortunelli A, Surnev S, Netzer FP (2016) Nanoscale domain structure and defects in a 2-D WO3 layer on Pd(100). J Phys Chem C 120:28682–28693CrossRefGoogle Scholar
  17. 17.
    Ponzoni A, Comini E, Sberveglieri G (2006) Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks. Appl Phys Lett 88:20310CrossRefGoogle Scholar
  18. 18.
    Gu Z, Zhai T, Gao BF, Sheng XH, Wang YB, Fu HB, Ma Y, Yao JN (2006) Controllable assembly of WO3 nanorods/nanowires into hierarchical nanostructures. J Phys Chem B 110:23829–23836CrossRefGoogle Scholar
  19. 19.
    Klinke C, Hannon JB, Gignac L, Reuter K, Avouris P (2005) Tungsten oxide nanowire growth by chemically induced strain. J Phys Chem B 109:17787–17790CrossRefGoogle Scholar
  20. 20.
    Baeck SH, Choi KS, Jaramillo TF, Stucky GD, McFarlan EW (2003) Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films. Adv Mater 15:1269–1273CrossRefGoogle Scholar
  21. 21.
    Gu G, Zhen B, Han WQ, Roth S, Liu J (2002) Tungsten oxide nanowires on tungsten substrates. Nano Lett 2:849–851CrossRefGoogle Scholar
  22. 22.
    Grätzel M (2001) Ultrafast colour displays. Nature 409:575–576CrossRefGoogle Scholar
  23. 23.
    Xu Y, Carlson S, Norrestam R (1997) Single crystal diffraction studies of WO3 at high pressures and the structure of a high-pressure WO3 phase. J Solid State Chem 132:123–130CrossRefGoogle Scholar
  24. 24.
    Souza Filho A, Freire PTC, Pilla O, Ayala AP, Mendes Filho J, Melo F, Freire V, Lemos V (2000) Pressure effects in the Raman spectrum of WO3. Phys Rev B 62:3699–3703CrossRefGoogle Scholar
  25. 25.
    Boulova M, Rosman N, Bouvier P, Lucazeau G (2002) High-pressure Raman study of microcrystalline WO3 tungsten oxide. J Phys Condens Matter 14:5849–5863CrossRefGoogle Scholar
  26. 26.
    Bouvier P, Crichton W, Boulova M, Lucazeau G (2002) X-ray diffraction study of WO3 at high pressure. J Phys Condens Matter 14:6605–6617CrossRefGoogle Scholar
  27. 27.
    Pagnier T, Pasturel A (2003) An ab initio study of WO3 under pressure up to GPa. J Phys Condens Matter 15:3121–3133CrossRefGoogle Scholar
  28. 28.
    Sawada S, Danielson GC (1959) Electrical conduction in crystals and ceramics of WO3. Phys Rev 113:803–805CrossRefGoogle Scholar
  29. 29.
    Li Y, Gao Y, Han Y, Wang Q, Li Y, Su N, Zhang J, Liu C, Ma Y, Gao C (2012) High-pressure electrical transport behavior in WO3. J Phys Chem C 116:5209–5214CrossRefGoogle Scholar
  30. 30.
    Vuong NM, Kim D, Kim H (2013) Electrochromic properties of porous WO3–TiO2 core–shell nanowires. J Mater Chem C 1:3399–3407CrossRefGoogle Scholar
  31. 31.
    Huo N, Yang S, Wei Z, Li J (2013) Synthesis of WO3 nanostructures and their ultraviolet photoresponse properties. J Mater Chem C 1:3999–4007CrossRefGoogle Scholar
  32. 32.
    Piermarini GJ, Block S, Barnett JD, Forman RA (1975) Calibration of the pressure dependence of the R1 ruby fluorescence line to 195 kbar. J Appl Phys 46:2774–2780CrossRefGoogle Scholar
  33. 33.
    Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to kbar under quasi-hydrostatic conditions. J Geophys Res Solid Earth 91:4673–4676CrossRefGoogle Scholar
  34. 34.
    Han Y et al (2005) Integrated microcircuit on a diamond anvil for high-pressure electrical resistivity measurement. Appl Phys Lett 86:064104CrossRefGoogle Scholar
  35. 35.
    Li M, Gao C, Ma Y, Wang D, Li Y, Liu J (2007) In situ electrical conductivity measurement of high-pressure molten (Mg0.875, Fe0.125)2SiO4. Appl Phys Lett 90:113507CrossRefGoogle Scholar
  36. 36.
    Li Y, Gao Y, Han Y, Liu C, Ren W, Wang Q, Ma Y, Wu B, Gao C (2012) Electrical transport properties of BaWO4 under high pressure. J Phys Chem C 116:25198–25205CrossRefGoogle Scholar
  37. 37.
    Li M, Gao C, Peng G, He C, Hao A, Huang X, Zhang D, Yu C, Ma Y, Zou G (2007) Thickness measurement of sample in diamond anvil cell. Rev Sci Instrum 78:075106CrossRefGoogle Scholar
  38. 38.
    Li Y, Gao Y, Han Y, Liu C, Peng G, Wang Q, Ke F, Ma Y, Gao C (2015) Metallization and Hall-effect of Mg2Ge under high pressure. Appl Phys Lett 107:142103CrossRefGoogle Scholar
  39. 39.
    Hemenger PM (1973) Measurement of high resistivity semiconductors using the van der Pauw method. Rev Sci Instrum 44:698–700CrossRefGoogle Scholar
  40. 40.
    Chen AL, Yu PY, Taylor RD (1993) Closure of the charge-transfer energy gap and metallization of NiI2 under pressure. Phys Rev Lett 71:4011–4014CrossRefGoogle Scholar
  41. 41.
    Ohta K, Cohen RE, Hirose K, Haule K, Shimizu K, Ohishi Y (2012) Experimental and theoretical evidence for pressure-induced metallization in FeO with rocksalt-type structure. Phys Rev Lett 108:026403CrossRefGoogle Scholar
  42. 42.
    Sidorov VA, Brazhkin V, Khvostantsev L, Lyapin A, Sapelkin A, Tsiok O (1994) Nature of semiconductor-to-metal transition and volume properties of bulk tetrahedral amorphous GaSb and GaSb–Ge semiconductors under high pressure. Phys Rev Lett 73:3262–3265CrossRefGoogle Scholar
  43. 43.
    Xin H, Qin X, Zhu X, Liu Y (2006) Temperature dependence of electrical resistivity for nanocrystalline Mg3+xSb2 prepared by mechanical alloying. J Phys D Appl Phys 39:375–381CrossRefGoogle Scholar
  44. 44.
    Regragui M, Jousseaume MV, Addou M, Outzourhit A, Bernéde JC, Idrissi BE (2001) Electrical and optical properties of WO3 thin films. Thin Solid Films 397:238–243CrossRefGoogle Scholar
  45. 45.
    Henisch HK (1984) Semiconductor contacts. Clarendon Press, OxfordGoogle Scholar
  46. 46.
    Huey BD, Bonnell DA (2000) Nanoscale variation in electric potential at oxide bicrystal and polycrystal interfaces. Solid State Ionics 131:51–60CrossRefGoogle Scholar
  47. 47.
    Watanabe T (2011) Grain boundary engineering: historical perspective and future prospects. J Mater Sci 46:4095–4115. CrossRefGoogle Scholar
  48. 48.
    De Wijs GA, De Boer PK, De Groot RA (1999) Anomalous behavior of the semiconducting gap in WO3 from first-principles calculations. Phys Rev B 59:2684–2693CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tianjin Key Laboratory of Advanced Electrical Engineering and Energy Technology, School of Electrical Engineering and AutomationTianjin Polytechnic UniversityTianjinPeople’s Republic of China
  2. 2.State Key Laboratory of Superhard Materials, Institute of Atomic and Molecular PhysicsJilin UniversityChangchunPeople’s Republic of China
  3. 3.Department of Mechanical EngineeringTexas Tech UniversityLubbockUSA
  4. 4.Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information TechnologyLiaocheng UniversityLiaochengPeople’s Republic of China

Personalised recommendations