Skip to main content

Advertisement

Log in

Investigation on electrical transport properties of nanocrystalline WO3 under high pressure

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electrical transport properties of nanocrystalline tungsten trioxides (WO3) under high pressures have been investigated by various electrical measurements up to 36.5 GPa. The discontinuous changes in direct-current resistivity under high pressures result from two electronic phase transitions at 4.3 and 10.5 GPa and two structural phase transitions at 24.8 and 31.6 GPa. Hall-effect measurement shows that the nanocrystalline WO3 is n-type semiconductor within the whole investigated pressure range. The carrier concentration decreases monotonously with increasing pressure, but mobility increases first and then decreases at 10.4 GPa. Through alternate-current impedance measurement, it can be found that the variation of the ratio of grain boundary resistance to grain resistance synchronizes with that of the mobility under high pressures, indicating that the grain boundary plays more important role in the carrier transport process of nanocrystalline WO3. The discontinuous changes of resistance and relaxation frequency of grain and grain boundary also provide the evidence for electronic phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Zhu Z, Sarker P, Zhao C, Zhou L, Grimm RL, Huda MN, Rao PM (2017) Photoelectrochemical properties and behavior of α-SnWO4 photoanodes synthesized by hydrothermal conversion of WO3 films. ACS Appl Mater Interfaces 9:1459–1470

    CAS  Google Scholar 

  2. Zhu J, Vasilopoulou M, Davazoglou D, Kennou S, Chroneos A, Schwingenschlög U (2017) Intrinsic defects and H doping in WO3. Sci Rep 7:40882

    CAS  Google Scholar 

  3. DePuccio DP, Ruíz-Rodríguez L, Rodríguez-Castellón E, Botella P, López Nieto JM, Landry CC (2016) Investigating the influence of Au nanoparticles on porous SiO2–WO3 and WO3 methanol transformation catalysts. J Phys Chem C 120:27954–27963

    CAS  Google Scholar 

  4. Zheng F, Lu H, Guo M, Zhang M, Zhen Q (2015) Hydrothermal preparation of WO3 nanorod array and ZnO nanosheet array composite structures on FTO substrates with enhanced photocatalytic properties. J Mater Chem C 3:7612–7620

    CAS  Google Scholar 

  5. Vuong N, Hieu H, Kim D (2013) An edge-contacted pn-heterojunction of a p-SWCNT/n-WO3 thin film. J Mater Chem C 1:5153–5160

    CAS  Google Scholar 

  6. Gouma PI, Kalyanasundaram K (2008) A selective nanosensing probe for nitric oxide. Appl Phys Lett 93:244102

    Google Scholar 

  7. Zhang Y, Lee SH, Mascarenhas A, Deb SK (2008) An UV photochromic memory effect in proton-based WO3 electrochromic devices. Appl Phys Lett 93:203508

    Google Scholar 

  8. Lu DY, Chen J, Chen HJ, Gong J, Deng SZ, Xu NS, Liu YL (2007) Raman study of thermochromic phase transition in tungsten trioxide nanowires. Appl Phys Lett 90:041919

    Google Scholar 

  9. Huelser TP, Lorke A, Ifeacho P, Wiggers H, Schulz C (2007) Core and grain boundary sensitivity of tungsten-oxide sensor devices by molecular beam assisted particle deposition. J Appl Phys 102:124305

    Google Scholar 

  10. Ramana CV, Utsunomiya S, Ewing RC, Julien CM, Becker U (2006) Structural stability and phase transitions in WO3 thin films. J Phys Chem B 110:10430–10435

    CAS  Google Scholar 

  11. Choi J, Sudhagar P, Kim JH, Kwon J, Kim J, Terashima C, Fujishima A, Song T, Paik U (2017) WO3/W: BiVO4/BiVO4 graded photoabsorber electrode for enhanced photoelectrocatalytic solar light driven water oxidation. Phys Chem Chem Phys 19:4648–4655

    CAS  Google Scholar 

  12. Dalavi DS, Devan RS, Patil RA, Patil RS, Ma Y, Sadale SB, Kim IY, Kim J, Patil PS (2013) Efficient electrochromic performance of nanoparticulate WO3 thin films. J Mater Chem C 1:3722–3728

    CAS  Google Scholar 

  13. Gullapalli SK, Vemuri RS, Ramana CV (2010) Structural transformation induced changes in the optical properties of nanocrystalline tungsten oxide thin film. Appl Phys Lett 96:171903

    Google Scholar 

  14. Wang SJ, Lu WJ, Cheng G, Cheng K, Jiang XH, Du ZL (2009) Electronic transport property of single-crystalline hexagonal tungsten trioxide nanowires. Appl Phys Lett 94:263106

    Google Scholar 

  15. Wang L, Cheng S, Wu C, Pei K, Song Y, Li H, Wang Q, Sang D (2017) Fabrication and high temperature electronic behaviors of n-WO3 nanorods/p-diamond heterojunction. Appl Phys Lett 110:052101

    Google Scholar 

  16. Doudin N, Kuhness D, Blatnik M, Barcaro G, Negreiros FR, Sementa L, Fortunelli A, Surnev S, Netzer FP (2016) Nanoscale domain structure and defects in a 2-D WO3 layer on Pd(100). J Phys Chem C 120:28682–28693

    CAS  Google Scholar 

  17. Ponzoni A, Comini E, Sberveglieri G (2006) Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks. Appl Phys Lett 88:20310

    Google Scholar 

  18. Gu Z, Zhai T, Gao BF, Sheng XH, Wang YB, Fu HB, Ma Y, Yao JN (2006) Controllable assembly of WO3 nanorods/nanowires into hierarchical nanostructures. J Phys Chem B 110:23829–23836

    CAS  Google Scholar 

  19. Klinke C, Hannon JB, Gignac L, Reuter K, Avouris P (2005) Tungsten oxide nanowire growth by chemically induced strain. J Phys Chem B 109:17787–17790

    CAS  Google Scholar 

  20. Baeck SH, Choi KS, Jaramillo TF, Stucky GD, McFarlan EW (2003) Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films. Adv Mater 15:1269–1273

    CAS  Google Scholar 

  21. Gu G, Zhen B, Han WQ, Roth S, Liu J (2002) Tungsten oxide nanowires on tungsten substrates. Nano Lett 2:849–851

    CAS  Google Scholar 

  22. Grätzel M (2001) Ultrafast colour displays. Nature 409:575–576

    Google Scholar 

  23. Xu Y, Carlson S, Norrestam R (1997) Single crystal diffraction studies of WO3 at high pressures and the structure of a high-pressure WO3 phase. J Solid State Chem 132:123–130

    CAS  Google Scholar 

  24. Souza Filho A, Freire PTC, Pilla O, Ayala AP, Mendes Filho J, Melo F, Freire V, Lemos V (2000) Pressure effects in the Raman spectrum of WO3. Phys Rev B 62:3699–3703

    CAS  Google Scholar 

  25. Boulova M, Rosman N, Bouvier P, Lucazeau G (2002) High-pressure Raman study of microcrystalline WO3 tungsten oxide. J Phys Condens Matter 14:5849–5863

    CAS  Google Scholar 

  26. Bouvier P, Crichton W, Boulova M, Lucazeau G (2002) X-ray diffraction study of WO3 at high pressure. J Phys Condens Matter 14:6605–6617

    CAS  Google Scholar 

  27. Pagnier T, Pasturel A (2003) An ab initio study of WO3 under pressure up to GPa. J Phys Condens Matter 15:3121–3133

    CAS  Google Scholar 

  28. Sawada S, Danielson GC (1959) Electrical conduction in crystals and ceramics of WO3. Phys Rev 113:803–805

    CAS  Google Scholar 

  29. Li Y, Gao Y, Han Y, Wang Q, Li Y, Su N, Zhang J, Liu C, Ma Y, Gao C (2012) High-pressure electrical transport behavior in WO3. J Phys Chem C 116:5209–5214

    CAS  Google Scholar 

  30. Vuong NM, Kim D, Kim H (2013) Electrochromic properties of porous WO3–TiO2 core–shell nanowires. J Mater Chem C 1:3399–3407

    CAS  Google Scholar 

  31. Huo N, Yang S, Wei Z, Li J (2013) Synthesis of WO3 nanostructures and their ultraviolet photoresponse properties. J Mater Chem C 1:3999–4007

    CAS  Google Scholar 

  32. Piermarini GJ, Block S, Barnett JD, Forman RA (1975) Calibration of the pressure dependence of the R1 ruby fluorescence line to 195 kbar. J Appl Phys 46:2774–2780

    CAS  Google Scholar 

  33. Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to kbar under quasi-hydrostatic conditions. J Geophys Res Solid Earth 91:4673–4676

    CAS  Google Scholar 

  34. Han Y et al (2005) Integrated microcircuit on a diamond anvil for high-pressure electrical resistivity measurement. Appl Phys Lett 86:064104

    Google Scholar 

  35. Li M, Gao C, Ma Y, Wang D, Li Y, Liu J (2007) In situ electrical conductivity measurement of high-pressure molten (Mg0.875, Fe0.125)2SiO4. Appl Phys Lett 90:113507

    Google Scholar 

  36. Li Y, Gao Y, Han Y, Liu C, Ren W, Wang Q, Ma Y, Wu B, Gao C (2012) Electrical transport properties of BaWO4 under high pressure. J Phys Chem C 116:25198–25205

    CAS  Google Scholar 

  37. Li M, Gao C, Peng G, He C, Hao A, Huang X, Zhang D, Yu C, Ma Y, Zou G (2007) Thickness measurement of sample in diamond anvil cell. Rev Sci Instrum 78:075106

    Google Scholar 

  38. Li Y, Gao Y, Han Y, Liu C, Peng G, Wang Q, Ke F, Ma Y, Gao C (2015) Metallization and Hall-effect of Mg2Ge under high pressure. Appl Phys Lett 107:142103

    Google Scholar 

  39. Hemenger PM (1973) Measurement of high resistivity semiconductors using the van der Pauw method. Rev Sci Instrum 44:698–700

    CAS  Google Scholar 

  40. Chen AL, Yu PY, Taylor RD (1993) Closure of the charge-transfer energy gap and metallization of NiI2 under pressure. Phys Rev Lett 71:4011–4014

    CAS  Google Scholar 

  41. Ohta K, Cohen RE, Hirose K, Haule K, Shimizu K, Ohishi Y (2012) Experimental and theoretical evidence for pressure-induced metallization in FeO with rocksalt-type structure. Phys Rev Lett 108:026403

    Google Scholar 

  42. Sidorov VA, Brazhkin V, Khvostantsev L, Lyapin A, Sapelkin A, Tsiok O (1994) Nature of semiconductor-to-metal transition and volume properties of bulk tetrahedral amorphous GaSb and GaSb–Ge semiconductors under high pressure. Phys Rev Lett 73:3262–3265

    CAS  Google Scholar 

  43. Xin H, Qin X, Zhu X, Liu Y (2006) Temperature dependence of electrical resistivity for nanocrystalline Mg3+xSb2 prepared by mechanical alloying. J Phys D Appl Phys 39:375–381

    CAS  Google Scholar 

  44. Regragui M, Jousseaume MV, Addou M, Outzourhit A, Bernéde JC, Idrissi BE (2001) Electrical and optical properties of WO3 thin films. Thin Solid Films 397:238–243

    CAS  Google Scholar 

  45. Henisch HK (1984) Semiconductor contacts. Clarendon Press, Oxford

    Google Scholar 

  46. Huey BD, Bonnell DA (2000) Nanoscale variation in electric potential at oxide bicrystal and polycrystal interfaces. Solid State Ionics 131:51–60

    CAS  Google Scholar 

  47. Watanabe T (2011) Grain boundary engineering: historical perspective and future prospects. J Mater Sci 46:4095–4115. https://doi.org/10.1007/s10853-011-5393-z

    Article  CAS  Google Scholar 

  48. De Wijs GA, De Boer PK, De Groot RA (1999) Anomalous behavior of the semiconducting gap in WO3 from first-principles calculations. Phys Rev B 59:2684–2693

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11674404, 11374121, 11404133, 11774126, 11604133, 61605145 and 61504093), the Open Project of State Key Laboratory of Superhard Materials (Jilin University) (Grant No. 201709) and the Tianjin Basic Science Foundation (Tianjin Polytechnic University) (Grant No. TJPUZK20170203), the Initial Foundation for Doctor Program of Tianjin Polytechnic University (Grant No. 030562) and Tianjin Research Program of Application Foundation and Advanced Technology (Grant Nos. 15JCQNJC41800 and 13JCYBJC37800).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yonghao Han or Chunxiao Gao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 602 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Gao, Y., Liu, C. et al. Investigation on electrical transport properties of nanocrystalline WO3 under high pressure. J Mater Sci 53, 6339–6349 (2018). https://doi.org/10.1007/s10853-018-2001-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2001-5

Navigation