Journal of Materials Science

, Volume 53, Issue 9, pp 6562–6573 | Cite as

Preparation and electrical properties of sintered copper powder compacts modified by polydopamine-derived carbon nanofilms

  • Zhengfeng Jia
  • Haoqi Li
  • Yao Zhao
  • Dmitriy A. Dikin
  • Junjie Ni
  • Limin Zhao
  • Jinming Zhen
  • Bo Ge
  • Xin Shao
  • Fei Ren
Composites
  • 42 Downloads

Abstract

In this study, copper (Cu)/polydopamine (PDA) composite was fabricated by vacuum hot-press sintering of micrometer-sized Cu particles covered with PDA film tailored at the nanometer scale thickness. The resultant compacts exhibited much higher electrical conductivity than the uncoated counterparts. Analyses of sintered samples using scanning and transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy revealed the conversion of PDA into carbonized PDA (cPDA). The increased mass density and grain growth are likely responsible for improved electrical conductivity of the composite material.

Notes

Acknowledgements

ZFJ thanks the support of Project of Natural Science Foundation of China (Grant No. 51775282), Shan Dong Province Nature Science Foundation (Grant ZR2017MEM019) and Open Project of State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, China (LSL-1504). FR would like to knowledge the financial support from the Temple University faculty startup fund.

Supplementary material

10853_2018_2000_MOESM1_ESM.doc (2 mb)
Supplementary material 1 (DOC 2092 kb)

References

  1. 1.
    Jiang RR, Zhou XF, Liu ZP (2017) Electroless Ni-plated graphene for tensile strength enhancement of copper. Mat Sci Eng A 679:323–328CrossRefGoogle Scholar
  2. 2.
    Hwang J, Yoon T, Jin SH, Lee J, Kim TS, Hong SH et al (2013) Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv Mater 25:6724–6729CrossRefGoogle Scholar
  3. 3.
    Ryu S, Chou JB, Lee K, Lee D, Soon SH, Zhao R et al (2015) Direct insulation-to-conduction transformation of adhesive catecholamine for simultaneous increases of electrical conductivity and mechanical strength of CNT fibers. Adv Mater 27:3250–3255CrossRefGoogle Scholar
  4. 4.
    Bartolucci SF, Paras J, Rafiee MA, Rafiee J, Lee S, Kapoor D et al (2011) Graphene-aluminum nanocomposites. Mat Sci Eng A 528:7933–7937CrossRefGoogle Scholar
  5. 5.
    Chen LY, Konishi H, Fehrenbacher A, Ma C, Xu JQ, Choi H et al (2012) Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scr Mater 67:29–32CrossRefGoogle Scholar
  6. 6.
    Jiang Y, Lu YL, Zhang LQ, Liu L, Dai YJ, Wang WC (2012) Preparation and characterization of silver nanoparticles immobilized on multi-walled carbon nanotubes by poly(dopamine) functionalization. J Nanopart Res 14:938.  https://doi.org/10.1007/s11051-012-0938-x CrossRefGoogle Scholar
  7. 7.
    Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430CrossRefGoogle Scholar
  8. 8.
    Jiang XL, Wang YL, Li MG (2014) Selecting water-alcohol mixed solvent for synthesis of polydopamine nano-spheres using solubility parameter. Sci Rep-UK 4:6070.  https://doi.org/10.1038/srep06070 CrossRefGoogle Scholar
  9. 9.
    Dreyer DR, Miller DJ, Freeman BD, Paul DR, Bielawski CW (2012) Elucidating the structure of poly(dopamine). Langmuir 28:6428–6435CrossRefGoogle Scholar
  10. 10.
    Liu YL, Ai KL, Lu LH (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114:5057–5115CrossRefGoogle Scholar
  11. 11.
    Cui W, Li MZ, Liu JY, Wang B, Zhang C, Jiang L et al (2014) A strong integrated strength and toughness artificial nacre based on dopamine cross-linked graphene oxide. ACS Nano 9:9511–9517CrossRefGoogle Scholar
  12. 12.
    Krogsgaard M, Nue V, Birkedal H (2016) Mussel-inspired materials: self-healing through coordination chemistry. Chem Eur J 22:844–857CrossRefGoogle Scholar
  13. 13.
    Lei C, Han F, Li D, Li WC, Sun Q, Zhang XQ et al (2013) Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe3O4 composites as superior lithium ion anodes. Nanoscale 5:1168–1175CrossRefGoogle Scholar
  14. 14.
    Ding B, Tang WC, Ji G, Ma Y, Xiao PF, Lu L et al (2014) Ultrathin carbon nanopainting of LiFePO4 by oxidative surface polymerization of dopamine. J Power Sources 265:239–245CrossRefGoogle Scholar
  15. 15.
    Kong JH, Yee WA, Yang LP, Wei YF, Phua SL, Ong HG et al (2012) Highly electrically conductive layered carbon derived from polydopamine and its functions in SnO2-based lithium ion battery anodes. Chem Commun 48:10316–10318CrossRefGoogle Scholar
  16. 16.
    Li HQ, Aulin YV, Frazer L, Borguet E, Kakodkar R, Feser J et al (2017) Structure evolution and thermoelectric properties of carbonized polydopamine thin films. ACS Appl Mater Interfaces 9:6655–6660CrossRefGoogle Scholar
  17. 17.
    Ye WC, Shi XZ, Su J, Chen Y, Fu JJ, Zhao XJ et al (2014) One-step reduction and functionalization protocol to synthesize polydopamine wrapping Ag/graphene hybrid for efficient oxidation of hydroquinone to benzoquinone. Appl Catal B-Environ 160–161:400–407CrossRefGoogle Scholar
  18. 18.
    Fu YC, Li PH, Xie QJ, Xu XH, Lei LH, Chen C et al (2009) One-pot preparation of polymer-enzyme-metallic nanoparticle composite films for high-performance biosensing of glucose and galactose. Adv Funct Mater 19:1784–1791CrossRefGoogle Scholar
  19. 19.
    Jia ZF, Chen TD, Wang J, Ni JJ, Li HY, Shao X (2015) Synthesis, characterization and tribological properties of Cu/reduced graphene oxide composites. Tribol Int 88:17–24CrossRefGoogle Scholar
  20. 20.
    Yang FH, Zhang Z, Han Y, Du K, Lai YQ, Li J (2015) TiO2/carbon hollow spheres as anode materials for advanced sodium ion batteries. Electrochim Acta 178:871–876CrossRefGoogle Scholar
  21. 21.
    Li RJ, Parvez K, Hinkel F, Feng XL, Müllen K (2013) Bioinspired wafer-scale production of highly stretchable carbon films for transparent conductive electrodes. Angew Chem Int Edit 52:5535–5538CrossRefGoogle Scholar
  22. 22.
    Kaminska I, Qi W, Barras A, Sobczak J, Niedziolka-Jonsson J, Woisel P et al (2013) Thiol-Yne click reactions on alkynyl-dopamine-modified reduced graphene oxide. Chem Eur J 19:8673–8678CrossRefGoogle Scholar
  23. 23.
    Jia ZF, Li HQ, Zhao Y, Frazer L, Qian B, Borguet E et al (2017) Electrical and mechanical properties of poly(dopamine)-modified copper/reduced graphene oxide composites. J Mater Sci 52:11620–11629.  https://doi.org/10.1007/s10853-017-1307-z CrossRefGoogle Scholar
  24. 24.
    Gao HC, Wang YX, Xiao F, Ching CB, Duan HW (2012) Growth of copper nanocubes on graphene paper as free-standing electrodes for direct hydrazine fuel cells. J Phys Chem C 116:7719–7725CrossRefGoogle Scholar
  25. 25.
    Pei SF, Cheng HM (2012) The reduction of graphene oxide. Carbon 50:3210–3228CrossRefGoogle Scholar
  26. 26.
    Jia ZF, Wang ZQ, Liu C, Zhao LM, Ni JJ, Li YC et al (2017) The synthesis and tribological properties of Ag/polydopamine nanocomposites as additives in poly-alpha-olefin. Tribol Int 114:282–289CrossRefGoogle Scholar
  27. 27.
    Moulder JF, Stickle WF, Sobol PE, Bomben Kenneth D (1995) Handbook of X-ray photoelectron spectroscopy. Physical Electronics Inc, ChanhassenGoogle Scholar
  28. 28.
    Bai YL, He XD, Wang RG, Sun Y, Zhu CC, Wang S et al (2013) High temperature physical and mechanical properties of large-scale Ti2AlC bulk synthesized by self-propagating high temperature combustion synthesis with pseudo hot isostatic pressing. J Eur Ceram Soc 33:2435–2445CrossRefGoogle Scholar
  29. 29.
    Tian L, Anderson I, Riedemann T, Russell A (2014) Modeling the electrical resistivity of deformation processed metal-metal composites. Acta Mater 77:151–161CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringLiaocheng UniversityLiaochengPeople’s Republic of China
  2. 2.Department of Mechanical EngineeringTemple UniversityPhiladelphiaUSA
  3. 3.State Key Laboratory of Solid LubricationLanzhou Institute of Chemical Physics, Chinese Academy of SciencesLanzhouPeople’s Republic of China

Personalised recommendations