Journal of Materials Science

, Volume 53, Issue 9, pp 6893–6910 | Cite as

Thermodynamic assessment of Ag–Cu–In

Metals
  • 40 Downloads

Abstract

The Ag–Cu–In thermodynamic material system is of interest for brazing alloys and chalcopyrite thin-film photovoltaics. To advance these applications, Ag–Cu–In was assessed and a Calphad model was developed. Binary Ag–Cu and Cu–In parameters were taken from previous assessments, while Ag–In was re-assessed. Structure-based models were employed for β-bcc(A2)-Ag3In, γ-Ag9In4, and AgIn2 to obtain good fit to enthalpy, phase boundary, and invariant reaction data for Ag–In. Ternary Ag–Cu–In parameters were optimized to achieve excellent fit to activity, enthalpy, and extensive phase equilibrium data. Relative to the previous Ag–Cu–In assessment, fit was improved while fewer parameters were used.

Notes

Acknowledgements

The authors gratefully acknowledge Bill Shafarman, who conceived the work. This work was supported by the US Department of Energy FPACE grant DE-EE0005407.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2018_1999_MOESM1_ESM.pdf (195 kb)
Supplementary material 1 (PDF 195 kb)

References

  1. 1.
    Woychik C, Massalski T (1988) Phase stability relationships and glass formation in the system Cu–Ag–In. Metall Mater Trans A 19:13–21CrossRefGoogle Scholar
  2. 2.
    Wierzbicka-Miernik A (2007) Własności termodynamiczne ciekłych stopów Ag-Cu-In do potencjalnych zastosowań na luty bezołowiowe. Inz Mat 28:889–897CrossRefGoogle Scholar
  3. 3.
    D’Silva TL (1980) Partially amorphous silver-copper-indium brazing foil, in, GTE Sylvania Products, Inc., Stamford, CT, United StatesGoogle Scholar
  4. 4.
    Ludwick MT, Murray WS (1949) Method of preparing a surface for soldering by coating with indium, in, The Indium Corporation of America, NY, United StatesGoogle Scholar
  5. 5.
    Prasad C, Szewczyk AF (1987) Process for bonding current carrying elements to a substrate in an electronic system, and structures thereof, in, International Business Machines Corporation, Armonk, NY, United StatesGoogle Scholar
  6. 6.
    Hanket GM, Thompson CP, Larsen JK, Eser E, Shafarman WN (2012) Control of Ga profiles in (AgCu)(InGa)Se2 absorber layers deposited on polyimide substrates. In: 38th IEEE photovoltaic specialists conference, pp 662–667Google Scholar
  7. 7.
    Edoff M, Jarmar T, Nilsson NS, Wallin E, Högström D, Stolt O, Lundberg O, Shafarman W, Stolt L (2017) High Voc in (Cu, Ag)(In, Ga)Se2 solar cells. IEEE J Photovolt 7:1789–1794CrossRefGoogle Scholar
  8. 8.
    Soltanmohammad S, Berg DM, Chen L, Kim K, Simchi H, Shafarman WN (2014) Effect of sputtering sequence on the properties of Ag–Cu–In–Ga metal precursors and reacted (Ag,Cu)(In,Ga)Se2 films. In: 2014 IEEE 40th photovoltaic specialist conference (PVSC), pp 1707–1711Google Scholar
  9. 9.
    Soltanmohammad S, Chen L, McCandless B, Shafarman WN (2017) Ag–Cu–In–Ga metal precursor thin films for (Ag, Cu)(In, Ga)Se2 solar cells. IEEE J. Photovolt 7:273–280CrossRefGoogle Scholar
  10. 10.
    Soltanmohammad S, Shafarman WN (2016) Reaction pathway analysis of Ag-alloyed Cu(In, Ga)Se2 absorber materials. In: 2016 IEEE 43rd photovoltaic specialists conference (PVSC), pp 2269–2273Google Scholar
  11. 11.
    Soltanmohammad S, Chen L, McCandless BE, Shafarman WN (2017) Phase stability in Ag–Cu–In–Ga metal precursors for (Ag, Cu)(In, Ga)Se2 thin films. Sol Energy Mater Sol Cells 172:347–352CrossRefGoogle Scholar
  12. 12.
    Soltanmohammad S, McCandless B, Shafarman WN (2017) A quaternary Laves-type phase in Ag–Cu–In–Ga thin films. J Alloy Compd 710:819–824CrossRefGoogle Scholar
  13. 13.
    Cao W, Chang YA, Zhu J, Chen S, Oates WA (2007) Thermodynamic modeling of the Cu–Ag–Au system using the cluster/site approximation. Intermetallics 15:1438–1446CrossRefGoogle Scholar
  14. 14.
    Hayes FH, Lukas HL, Effenberg G, Petzow G (1986) A thermodynamic optimisation of the Cu–Ag–Pb system. Z Metallk 77:749–754Google Scholar
  15. 15.
    He XC, Wang H, Liu HS, Jin ZP (2006) Thermodynamic description of the Cu–Ag–Zr system. Calphad 30:367–374CrossRefGoogle Scholar
  16. 16.
    Kusoffsky A (2002) Thermodynamic evaluation of the ternary Ag–Au–Cu system-including a short range order description. Acta Mater 50:5139–5145CrossRefGoogle Scholar
  17. 17.
    Li Z (2016) Thermodynamic assessments and atomic layer deposition for CIGS-based thin film solar cell. In: Chemical Engineering, University of Florida, Gainesville, FLGoogle Scholar
  18. 18.
    Lim MS-S, Tibballs JE, Rossiter PL (1997) An assessment of thermodynamic equilibria in the Ag–Al–Cu–Mg quaternary system in relation to precipitation reactions. Z Metallk 88:236–245Google Scholar
  19. 19.
    Moon KW, Boettinger WJ, Kattner UR, Biancaniello FS, Handwerker CA (2000) Experimental and thermodynamic assessment of Sn–Ag–Cu solder alloys. J Electron Mater 29:1122–1136CrossRefGoogle Scholar
  20. 20.
    Murray J (1984) Calculations of stable and metastable equilibrium diagrams of the Ag–Cu and Cd–Zn systems. Metall Trans A 15:261–268CrossRefGoogle Scholar
  21. 21.
    Witusiewicz VT, Hecht U, Fries SG, Rex S (2004) The Ag–Al–Cu system: Part I—reassessment of the constituent binaries on the basis of new experimental data. J Alloy Compd 385:133–143Google Scholar
  22. 22.
    Borisov II, Manasijević DM, Živković DT (2007) Proračun faznih ravnoteža u sistemu Ag–In–Sb Calphad metodom. Hem Ind 61:152–156CrossRefGoogle Scholar
  23. 23.
    Gierlotka W (2012) Thermodynamic description of the quaternary Ag–Cu–In–Sn system. J Electron Mater 41:86–108CrossRefGoogle Scholar
  24. 24.
    Jendrzejczyk D, Fitzner K (2005) Thermodynamic properties of liquid silver-indium alloys determined from e.m.f. measurements. Thermochim Acta 433:66–71CrossRefGoogle Scholar
  25. 25.
    Korhonen TM, Kivilahti J (1998) Thermodynamics of the Sn–In–Ag solder system. J Electron Mater 27:149–158CrossRefGoogle Scholar
  26. 26.
    Moser Z, Gasior W, Pstrus J, Zakulski W, Ohnuma I, Liu X, Inohana Y, Ishida K (2001) Studies of the Ag–In phase diagram and surface tension measurements. J Electron Mater 30:1120–1128CrossRefGoogle Scholar
  27. 27.
    Muzzillo CP, Campbell CE, Anderson TJ (2016) Cu–Ga–In thermodynamics: experimental study, modeling, and implications for photovoltaics. J Mater Sci 51:3362–3379.  https://doi.org/10.1007/s10853-015-9651-3 CrossRefGoogle Scholar
  28. 28.
    Gebhardt E, Dreher M (1951) Über den Aufbau des Systems Kupfer-Silber-Indium I. Gleichgewichtsverlauf auf der Kupfer-Silber-Seite. Z Metallk 42:230–238Google Scholar
  29. 29.
    Gebhardt E, Dreher M (1952) Über den Aufbau des Systems Kupfer-Silber-Indium II. Gleichgewichtsverlauf bis zu Indiumgehalten von 30%. Z Metallk 43:357–363Google Scholar
  30. 30.
    Bahari Z, Elgadi M, Rivet J, Dugué J (2009) Experimental study of the ternary Ag–Cu–In phase diagram. J Alloy Compd 477:152–165CrossRefGoogle Scholar
  31. 31.
    Haque MA, Gierlotka W (2013) Phase equilibria of the ternary Ag–Cu–In system at 300 °C. Int J Min Metall Mech Eng 1:173–177Google Scholar
  32. 32.
    Sisamouth L, Hamdi M, Ariga T (2010) Investigation of gap filling ability of Ag–Cu–In brazing filler metals. J Alloy Compd 504:325–329CrossRefGoogle Scholar
  33. 33.
    Wierzbicka A, Czeppe T, Zabdyr L (2006) Experimental study of phase equilibria in the silver–copper–indium alloys. Arch Metall Mater 51:377–387Google Scholar
  34. 34.
    Kroupa A, Dinsdale AT, Watson A, Vrestal J, Vízdal J, Zemanova A (2007) The development of the COST 531 lead-free solders thermodynamic database. JOM 59:20–25CrossRefGoogle Scholar
  35. 35.
    Bienzle M, Oishi T, Sommer F, Ono K (1992) Thermodynamic study of the silver-rich Ag–Cu solid solution. Mater Trans JIM 33:51–56CrossRefGoogle Scholar
  36. 36.
    Subramanian PR, Perepezko JH (1993) The Ag–Cu (silver–copper) system. J Phase Equilib 14:62–75CrossRefGoogle Scholar
  37. 37.
    Fitzner K, Guo Q, Wang J, Kleppa OJ (1999) Enthalpies of liquid-liquid mixing in the systems Cu–Ag, Cu–Au and Ag–Au by using an in situ mixing device in a high temperature single-unit differential calorimeter. J Alloy Compd 291:190–200CrossRefGoogle Scholar
  38. 38.
    Bahari Z, Rivet J, Legendre B, Dugué J (1999) Study of the Ag-In-Te ternary system: II. Description of the quadrilateral Ag–Ag2Te–In2Te3–In. J Alloy Compd 289:99–115CrossRefGoogle Scholar
  39. 39.
    Campbell AN, Wagemann R, Ferguson RB (1970) The silver-indium system: thermal analysis, photomicrography, electron microprobe, and X-ray powder diffraction results. Can J Chem 48:1703–1715CrossRefGoogle Scholar
  40. 40.
    Hellner E (1951) Das zweistoffsystem silber-indium. Z Metallk 42:17–19Google Scholar
  41. 41.
    Weibke F, Eggers H (1935) Das zustandsdiagramm des systems silber-indium. Z Anorg Allg Chem 222:145–160CrossRefGoogle Scholar
  42. 42.
    Brandon JK, Brizard RY, Pearson WB, Tozer DJN (1977) γ-Brasses with I and P cells. Acta Crystallogr B 33:527–537CrossRefGoogle Scholar
  43. 43.
    Bahari Z, Dugué J (2017) Thermodynamic studies of the binary systems Ag–In and Cu–In. Eur Phys J Spec Top 226:1137–1142CrossRefGoogle Scholar
  44. 44.
    Muzzillo CP (2015) Chalcopyrites for solar cells: chemical vapor deposition, selenization, and alloying. Chemical Engineering. University of Florida, Gainesville, p 458Google Scholar
  45. 45.
    Cao S, Huang S, Chu M, Yue Q, Shen J (2007) Thermodynamic optimization of Cu–In system. Chin J Rare Met 31:807–812Google Scholar
  46. 46.
    Schmid-Fetzer R, Andersson D, Chevalier PY, Eleno L, Fabrichnaya O, Kattner UR, Sundman B, Wang C, Watson A, Zabdyr L, Zinkevich M (2007) Assessment techniques, database design and software facilities for thermodynamics and diffusion. Calphad 31:38–52CrossRefGoogle Scholar
  47. 47.
    Mizutani U, Noritake T, Ohsuna T, Takeuchi T (2010) Hume-Rothery electron concentration rule across a whole solid solution range in a series of gamma-brasses in Cu–Zn, Cu–Cd, Cu–Al, Cu–Ga, Ni–Zn and Co–Zn alloy systems. Philos Mag 90:1985–2008CrossRefGoogle Scholar
  48. 48.
    Ma X, Li L-F, Zhang Z-H, Wang H, Wang E-Z, Qiu T (2015) Microstructure and melting properties of Ag–Cu–In intermediate-temperature brazing alloys. Rare Met 34:324–328CrossRefGoogle Scholar
  49. 49.
    Alcock CB, Sridhar R, Svedberg RC (1969) A mass spectrometric study of the binary liquid alloys, Ag–In and Cu–Sn. Acta Metall 17:839–844CrossRefGoogle Scholar
  50. 50.
    Kameda K, Yoshida Y, Sakairi S (1981) Activities of liquid silver–indium alloys by E.M.F. Measurements using zirconia solid and fused salt electrolytes. J Jpn Inst Met 45:614–620CrossRefGoogle Scholar
  51. 51.
    Mycielska EP, Terpilowski J, Strozecka K (1963) Arch Hutn 8:85–102Google Scholar
  52. 52.
    Nozaki T, Shimoji M, Niwa K (1966) Thermodynamic studies on liquid silver–indium alloys. Trans Jpn Inst Met 7:52–55CrossRefGoogle Scholar
  53. 53.
    Predel B, Schallner U (1972) Untersuchung der thermodynamischen Eigenschaften flüssiger binärer Legierungen des Silbers und Goldes mit Gallium, Indium und Germanium. Z Metallk 63:341–347Google Scholar
  54. 54.
    Qi G, Hino M, Azakami T (1989) Thermodynamic study of liquid Ag–In and Ag–Ga alloys with a Knudsen cell-mass spectrometer. Mater Trans JIM 30:575–582CrossRefGoogle Scholar
  55. 55.
    Béja R, Laffitte M (1968) Enthalpie de mélange des alliages liquides argent-gallium á 500 °C. C R Acad Sci C Chim 267C:123–126Google Scholar
  56. 56.
    Castanet R, Claire Y, Laffitte M (1970) Propriétés thermodynamiques des solutions liquides argent-indium. J Chim Phys Phys Chim Biol 67:789–793CrossRefGoogle Scholar
  57. 57.
    Itagaki K, Yazawa A (1968) Measurements of heats of mixing in liquid silver binary alloys. J Jpn Inst Met 32:1294–1300CrossRefGoogle Scholar
  58. 58.
    Kleppa OJ (1956) Heat of formation of solid and liquid alloys in the systems silver–cadmium, silver–indium and silver–antimony at 450°. J Phys Chem 60:846–852CrossRefGoogle Scholar
  59. 59.
    Hume-Rothery W, Mabbott GW, Evans KMC (1934) The freezing points, melting points, and solid solubility limits of the alloys of silver, and copper with the elements of the B sub-groups. Philos Trans R Soc A 233:1–97CrossRefGoogle Scholar
  60. 60.
    Orr RL, Hultgren R (1961) Heats of formation of α-phase silver–indium alloys. J Phys Chem 65:378–380CrossRefGoogle Scholar
  61. 61.
    Masson DB, Pradhan SS (1973) Measurement of vapor pressure of indium over α Ag–In using atomic absorption. Metall Trans 4:991–995CrossRefGoogle Scholar
  62. 62.
    Alcock CB, Jacob KT, Palamutçu T (1973) Thermodynamics of α-solid solutions of silver with indium and tin. Acta Metall 21:1003–1009CrossRefGoogle Scholar
  63. 63.
    Wallbrecht PC, Blachnik R, Mills KC (1981) The heat capacity and enthalpy of some hume-rothery phases formed by copper, silver and gold. Part III. Cu + Ga, Ag + Ga, Au + Ga, Cu + In, Ag + In and Au + In systems. Thermochim Acta 48:69–82CrossRefGoogle Scholar
  64. 64.
    Franetović V, Kunstelj D, Bonefačić A (1982) The investigation of metastable ζ-hcp phase in the Ag-rich fcc region of Ag–In alloys rapidly quenched from the melt. J Mater Sci 17:2771–2780.  https://doi.org/10.1007/BF00644651 CrossRefGoogle Scholar
  65. 65.
    Dinsdale AT (1991) SGTE data for pure elements. Calphad 15:317–425CrossRefGoogle Scholar
  66. 66.
    Che GC, Ellner M (1992) Powder crystal data for the high-temperature phases Cu4In, Cu9In4(h) and Cu2In(h). Powder Diffr 7:107–108CrossRefGoogle Scholar
  67. 67.
    Morris DP, Williams I (1961) The β-Ag3In phase. Acta Crystallogr 14:74CrossRefGoogle Scholar
  68. 68.
    Cao W, Chen SL, Zhang F, Wu K, Yang Y, Chang YA, Schmid-Fetzer R, Oates WA (2009) PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation. Calphad 33:328–342CrossRefGoogle Scholar
  69. 69.
    Muggianu Y-M, Gambino M, Bros J-P (1975) Enthalpies of formation of liquid alloys bismuth–gallium–tin at 723 K—choice of an analytical representation of integral and partial thermodynamic functions of mixing for this ternary-system. J Chim Phys Phys Chim Biol 72:83–88CrossRefGoogle Scholar
  70. 70.
    Lukas HL, Fries SG, Sundman B (2007) Computational thermodynamics—the Calphad method. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  71. 71.
    Sundman B, Ågren J (1981) A regular solution model for phases with several components and sublattices, suitable for computer applications. J Phys Chem Solids 42:297–301CrossRefGoogle Scholar
  72. 72.
    Redlich O, Kister AT (1948) Algebraic representation of thermodynamic properties and the classification of solutions. Ind Eng Chem 40:345–348CrossRefGoogle Scholar
  73. 73.
    Hillert M (1980) Empirical methods of predicting and representing thermodynamic properties of ternary solution phases. Calphad 4:1–12CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature (outside the USA) 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.National Renewable Energy LaboratoryGoldenUSA

Personalised recommendations