Journal of Materials Science

, Volume 53, Issue 9, pp 6698–6706 | Cite as

Polydiacetylene-functionalized alumina aerogels as visually observable sensing materials for detecting VOCs concentration

Electronic materials


Aiming to develop universal, effective, and visually observable sensing nanomaterials for detecting concentrations of volatile organic compounds (VOCs), we fabricated a functionalized alumina aerogel sheet by embedding a chromatic conjugated polymer–polydiacetylene (PDA) in alumina aerogel pores, which underwent dramatic color changes upon exposure to different concentrations of VOCs. Taking the activated carbon as the example, we designed an air purification detection system by using the as-synthesized PDA-functionalized alumina aerogel sheets, which could give a definite indication from the changes of color. Overall, this study presents a simple and low-cost method to fabricate PDA-functionalized alumina aerogel sheet in which noncovalent interactions between the alumina aerogel sheet substrate and spin-coated PDA give rise to distinct chromatic properties after exposure to different concentrations of VOCs.



We gratefully acknowledge the financial support of the Nature Science Foundation of Jiangsu Province of China (BK20151408) and the Fundamental Research Funds for the Central Universities (3207046418, KYLX16_0193, and 2242017k1G006).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2018_1988_MOESM1_ESM.pdf (296 kb)
Supplementary material 1 (PDF 296 kb)


  1. 1.
    Konvalina G, Haick H (2014) Sensors for breath testing: from nanomaterials to comprehensive disease detection. Acc Chem Res 47:66–76CrossRefGoogle Scholar
  2. 2.
    Kim JS, Yoo HW, Choi HO, Jung HT (2014) Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2. Nano Lett 14:5941–5947CrossRefGoogle Scholar
  3. 3.
    Wang RX, Li GL, Dong YQ, Chi YW, Chen GN (2013) Carbon quantum dot-functionalized aerogels for NO2 gas sensing. Anal Chem 85:8065–8069CrossRefGoogle Scholar
  4. 4.
    Dolai S, Bhunia SK, Jelinek R (2017) Carbon-dot-aerogel sensor for aromatic volatile organic compounds. Sens Actuators B 241:607–613CrossRefGoogle Scholar
  5. 5.
    Spadavecchia J, Ciccarella G, Vasapollo G, Siciliano P, Rella R (2004) UV–Vis absorption optosensing materials based on metallophthalocyanines thin films. Sens Actuators B 100:135–138CrossRefGoogle Scholar
  6. 6.
    Nakamura S, Daishima S (2005) Simultaneous determination of 22 volatile organic compounds, methyl-tert-butyl ether, 1, 4-dioxane, 2-methylisoborneol and geosmin in water by headspace solid phase microextraction-gas chromatography-mass spectrometry. Anal Chim Acta 548:79–85CrossRefGoogle Scholar
  7. 7.
    Suzuki Y (1997) Automated analysis of low-molecular weight organic acids in ambient air by a microporous tube diffusion scrubber system coupled to ion chromatography. Anal Chim Acta 353:227–237CrossRefGoogle Scholar
  8. 8.
    Mansour MA, Connick WB, Lachicotte RJ, Gysling HJ, Eisenberg R (1998) Linear chain Au (I) dimer compounds as environmental sensors: a luminescent switch for the detection of volatile organic compounds. J Am Chem Soc 120:1329–1330CrossRefGoogle Scholar
  9. 9.
    Daws CA, Exstrom CL, Sowa JR, Mann KR (1997) “Vapochromic” compounds as environmental sensors. 2 synthesis and near-infrared and infrared spectroscopy studies of [Pt (arylisocyanide) 4][Pt (CN) 4] upon exposure to volatile organic compound vapors. Chem Mater 9:363–368CrossRefGoogle Scholar
  10. 10.
    Taurino AM, Capone S, Siciliano P, Toccoli T, Boschetti A, Guerini L, Lannotta S (2003) Nanostructured TiO2 thin films prepared by supersonic beams and their application in a sensor array for the discrimination of VOC. Sens Actuators B 92:292–302CrossRefGoogle Scholar
  11. 11.
    Naessens M, Tran-Minh C (1999) Biosensor using immobilized chlorella microalgae for determination of volatile organic compounds. Sens Actuators B 59:100–102CrossRefGoogle Scholar
  12. 12.
    Reichl D, Krage R, Krumme C, Gauglitz G (2000) Sensing of volatile organic compounds using a simplified reflectometric interference spectroscopy setup. Appl Spectrosc 54:583–586CrossRefGoogle Scholar
  13. 13.
    Dolai S, Bhunia SK, Beglaryan SS, Kolusheva S, Zeiri L, Jelinek R (2017) Colorimetric polydiacetylene-aerogel detector for volatile organic compounds (VOCs). ACS Appl Mater Interfaces 9:2891–2898CrossRefGoogle Scholar
  14. 14.
    Kootery KP, Jiang H, Kolusheva S, Vinod TP, Ritenberg M, Zeiri L, Volinsky R, Malferrari D, Galletti P, Tagliavini E, Jelinek R (2014) Poly(methyl methacrylate)-supported polydiacetylene films: unique chromatic transitions and molecular sensing. ACS Appl Mater Interfaces 6:8613–8620CrossRefGoogle Scholar
  15. 15.
    Kang DH, Jung HS, Ahn N, Lee J, Seo S, Suh KY, Kim J, Kim K (2012) Biomimetic detection of aminoglycosidic antibiotics using polydiacetylene-phospholipids supramolecules. Chem Commun 48:5313–5315CrossRefGoogle Scholar
  16. 16.
    Seo S, Lee J, Kwon MS, Seo D, Kim J (2015) Stimuli-responsive matrix-assisted colorimetric water indicator of polydiacetylene nanofibers. ACS Appl Mater Interfaces 7:20342–20348CrossRefGoogle Scholar
  17. 17.
    Lee J, Seo S, Kim J (2012) Colorimetric detection of warfare gases by polydiacetylenes toward equipment-free detection. Adv Funct Mater 22:1632–1638CrossRefGoogle Scholar
  18. 18.
    Lee S, Kim JY, Chen XQ, Yoon J (2016) Recent progress in stimuli-induced polydiacetylenes for sensing temperature, chemical and biological targets. Chem Commun 52:9178–9196CrossRefGoogle Scholar
  19. 19.
    Davis BW, Burris AJ, Niamnont N, Hare CD, Chen CY, Sukwattanasinitt M, Cheng Q (2014) Dual-mode optical sensing of organic vapors and proteins with polydiacetylene (PDA)-embedded electrospun nanofibers. Langmuir 30:9616–9622CrossRefGoogle Scholar
  20. 20.
    Kauffman JS, Ellerbrock BM, Stevens KA, Brown PJ, Pennington WT, Hanks TW (2009) Preparation, characterization, and sensing behavior of polydiacetylene liposomes embedded in alginate fibers. ACS Appl Mater Interfaces 1:1287–1291CrossRefGoogle Scholar
  21. 21.
    Park MK, Kim KW, Ahn DJ, Oh MK (2012) Label-free detection of bacterial RNA using polydiacetylene-based biochip. Biosens Bioelectron 35:44–49CrossRefGoogle Scholar
  22. 22.
    Wang D, McLaughlin E, Pfeffer R, Lin YS (2011) Adsorption of organic compounds in vapor liquid, and aqueous solution phases on hydrophobic aerogels. Ind Eng Chem Res 50:12177–12185CrossRefGoogle Scholar
  23. 23.
    Zuo LZ, Zhang YF, Zhang LS, Miao YE, Fan W, Liu TX (2015) Polymer/carbon-based hybrid aerogels: preparation, properties and applications. Materials 8:6806–6848CrossRefGoogle Scholar
  24. 24.
    Qi HS, Liu JW, Pionteck J, Potschke P, Mader E (2015) Carbon nanotube-cellulose composite aerogels for vapour sensing. Sens Actuators B 213:20–26CrossRefGoogle Scholar
  25. 25.
    Thubsuang U, Sukanan D, Sahasithiwat S, Wongkasemjit S, Chaisuwan T (2015) Highly sensitive room temperature organic vapor sensor based on polybenzoxazine-derived carbon aerogel thin film composite. Mater Sci Eng B 200:67–77CrossRefGoogle Scholar
  26. 26.
    Baumann TF, Gash AE, Chinn SC, Sawvel AM, Maxwell RS et al (2005) Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors. Chem Mater 17:395–401CrossRefGoogle Scholar
  27. 27.
    Gash AE, Tillotson TM, Satcher JH, Poco JF, Hrubesh LW, Simpson RL (2001) Use of epoxides in the sol–gel synthesis of porous iron (III) oxide monoliths from Fe (III) salts. Chem Mater 13:999–1007CrossRefGoogle Scholar
  28. 28.
    Eaidkong T, Mungkarndee R, Phollookin C, Tumcharern G, Sukwattanasinitt M, Wacharasindhu S (2012) Polydiacetylene paper based colorimetric sensor array for vapor phase detection and identification of volatile organic compounds. J Mater Chem 22:5970–5977CrossRefGoogle Scholar
  29. 29.
    Sun XM, Chen T, Huang SQ, Li L, Peng HS (2010) Chromatic polydiacetylene with novel sensitivity. Chem Soc Rev 39:4244–4257CrossRefGoogle Scholar
  30. 30.
    Ahn DJ, Chae EH, Lee GS, Shim HY, Chang TE, Ahn KD, Kim JM (2003) Colorimetric reversibility of polydiacetylene supramolecules having enhanced hydrogen-bonding under thermal and pH stimuli. J Am Chem Soc 125:8976–8977CrossRefGoogle Scholar
  31. 31.
    Yoon B, Ham DY, Yarimaga O, An H, Lee CW, Kim JM (2011) Inkjet printing of conjugated polymer precursors on paper substrates for colorimetric sensing and flexible electrothermochromic display. Adv Mater 23:5492–5497CrossRefGoogle Scholar
  32. 32.
    Zhang W, Xu H, Chen Y, Fan LJ (2013) Polydiacetylene polymethylmethacrylate/graphene composites as one-shot, visually observable, and semiquantative electrical current sensing materials. ACS Appl Mater Interfaces 5:4603–4606CrossRefGoogle Scholar
  33. 33.
    Rakow NA, Suslick KS (2000) A colorimetric sensor array for odour visualization. Nature 406:710–713CrossRefGoogle Scholar
  34. 34.
    Jeon H, Lee J, Kim MH, Yoon J (2012) Polydiacetylene-based electrospun fibers for detection of HCl gas. Macromol Macromol Macromol Rapid Commun 33:972–976CrossRefGoogle Scholar
  35. 35.
    Sun XM, Chen T, Huang SQ, Li L, Peng HS (2010) Chromatic polydiacetylene with novel sensitivity. Chem Soc Rev 39:4244–4257CrossRefGoogle Scholar
  36. 36.
    Friedman S, Kolusheva S, Volinsky R, Zeiri L, Schrader T, Jelinek R (2008) Lipid/polydiacetylene films for colorimetric protein surface-charge analysis. Anal Chem 80:7804–7811CrossRefGoogle Scholar
  37. 37.
    Lifshitz Y, Upcher A, Kovalev A, Wainstein D, Rashkovsky A, Zeiri L, Golan Y, Berman A (2011) Zinc modified polydiacetylene langmuir films. Soft Matter 7:9069–9077CrossRefGoogle Scholar
  38. 38.
    Wu AD, Beck C, Ying Y, Federici J, Iqbal Z (2013) Thermochromism in polydiacetylene-ZnO nanocomposites. J Phys Chem C 117:19593–19600Google Scholar
  39. 39.
    Lim C, Sandman DJ, Sukwattanasinitt M (2008) Topological polymerization of tert-butylcalix[4]arenes containing diynes. Macromolecules 41:675–681CrossRefGoogle Scholar
  40. 40.
    Jiang H, Jelinek R (2015) Mixed diacetylene/octadecyl melamine nanowires formed at the air/water interface exhibit unique structural and colorimetric properties. Langmuir 31:5843–5850CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringSoutheast UniversityNanjingChina

Personalised recommendations