Journal of Materials Science

, Volume 53, Issue 9, pp 6681–6697 | Cite as

Interfacial reactions of crystalline Ni and amorphous SiC thin films

  • A.-S. Keita
  • Z. Wang
  • W. Sigle
  • E. J. Mittemeijer
Electronic materials


The initial interfacial reactions of crystalline nickel and amorphous silicon carbide (Ni/a-SiC) thin films were investigated by means of X-ray diffraction (XRD) analysis, high-resolution transmission electron microscopy [(HR)TEM], Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). Upon annealing at 500 °C, in the initial stage (< 5 min) of reactive interdiffusion, dissociation of a-SiC takes place, followed by rapid formation of a crystalline nickel silicide sublayer adjacent to the surface and precipitation of (amorphous) carbon, as a sublayer underneath the top silicide layer, as demonstrated by HRTEM. Diffusional transport of Ni through the a-C sublayer and its subsequent reaction with a-SiC leads to the formation of a second silicide layer and a second a-C layer underneath this second silicide layer, etc. As a result, the interfacial reactions lead to the formation of an alternating, nickel silicide/amorphous carbon (a-C), multilayered structure: silicide/a-C/silicide/a-C/silicide/a-SiC. The microstructural development was interpreted on the basis of the thermodynamics and kinetics governing the reaction.



We are indebted to Dr. Gunther Richter and Mr. Reinhart Völker for layer depositions, Mr. Wolf-Dieter Lang for the preparation of specimens for TEM analysis, Dr. Ewald Bischoff and Mr. Kersten Hahn for help in the TEM characterization, Dipl.-Ing. Bernhard Siegle and Dipl.-Ing. Peter Schützendübe for performing various AES measurements, and to Mrs. Michaela Wieland for the XPS measurements (all at the Max Planck Institute for Intelligent Systems (MPI-IS)). Dr. Z. Wang acknowledges supports by the National Natural Science Foundation of China (No. 51571148) and by the Thousand Talents Program for Distinguished Young Scholars of China.

Supplementary material

10853_2018_1986_MOESM1_ESM.pdf (1 mb)
Supplementary material 1 (PDF 1060 kb)


  1. 1.
    Mélinon P, Masenelli B, Tournus F, Perez A (2007) Playing with carbon and silicon at the nanoscale. Nat Mater 6:479–490CrossRefGoogle Scholar
  2. 2.
    Casady JB, Johnson RW (1996) Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid-State Elec 39:1409–1422CrossRefGoogle Scholar
  3. 3.
    Daves W, Krauss A, Behnel N, Häublein V, Bauer A, Frey L (2011) Amorphous silicon carbide thin films (a-SiC:H) deposited by plasma-enhanced chemical vapor deposition as protective coatings for harsh environment applications. Thin Solid Films 519:5892–5898CrossRefGoogle Scholar
  4. 4.
    Dinh T, Dao DV, Phan HP, Wang L, Qamar A, Nguyen NT, Tanner P, Rybachuk M (2015) Charge transport and activation energy of amorphous silicon carbide thin film on quartz at elevated temperature. Appl Phys Express 8:061303-1–061303-4CrossRefGoogle Scholar
  5. 5.
    Digdaya IA, Han L, Buijs TWF, Zeman M, Dam B, Smets AHM, Smith WA (2015) Extracting large photovoltages from a-SiC photocathodes with an amorphous TiO2 front surface field layer for solar hydrogen evolution. Energy Environ Sci 8:1585–1593CrossRefGoogle Scholar
  6. 6.
    ElGazzar H, Abdel-Rahman E, Salem HG, Nassar F (2010) Preparation and characterizations of amorphous nanostructured SiC thin films by low energy pulsed laser deposition. Appl Surf Sci 256:2056–2060CrossRefGoogle Scholar
  7. 7.
    Wright NG, Horsfall AB (2007) SiC sensors: a review. J Phys D Appl Phys 40:6345–6354CrossRefGoogle Scholar
  8. 8.
    Azevedo RG, Jones DG, Jog AV, Jamshidi B, Myers DR, Chen L, Fu XA, Mehregany M, Wijesundara MBJ, Pisano AP (2007) A SiC MEMS resonant strain sensor for harsh environment applications. IEEE Sens J 7:568–576CrossRefGoogle Scholar
  9. 9.
    Sarro PM (2000) Silicon carbide as a new MEMS technology. Sens Actuators A 82:210–218CrossRefGoogle Scholar
  10. 10.
    Maex K, Van Rossum M (1995) Properties of metal silicides. INSPEC, the Institution of Electrical Engineers, LondonGoogle Scholar
  11. 11.
    Roccaforte F, La Via F, Raineri V, Calcagno L, Musumeci P (2004) Improvement of high temperature stability of nickel contacts on n-type 6H–SiC. Appl Surf Sci 184:295–298CrossRefGoogle Scholar
  12. 12.
    Cao Y, Nyborg L, Jelvestam U, Yi D (2005) Effect of pre-treatment and nickel layer thickness on nickel silicide/silicon carbide contact. Appl Surf Sci 241:392–402CrossRefGoogle Scholar
  13. 13.
    Schiepers RCJ, van Loo FJJ, de With G (1988) Reactions between α-silicon carbide ceramic and nickel or iron. J Am Ceram Soc 71:C284–C287CrossRefGoogle Scholar
  14. 14.
    Schiepers RCJ, van Beek JA, van Loo FJJ, de With G (1993) The interaction between SiC and Ni, Fe, (Fe, Ni) and steel: morphology and kinetics. J Eur Ceram Soc 11:211–218CrossRefGoogle Scholar
  15. 15.
    Gülpen JH, Kodentsov AA, van Loo FJJ (1995) Growth of silicides in Ni-Si and Ni-SiC bulk diffusion couples. Z Metallkd 86:530–539Google Scholar
  16. 16.
    van Loo FJJ, Rijnders MR, Rönkä KJ, Gülpen JH, Kodentsov AA (1997) Solid state diffusion and reactive phase formation. Solid State Ionics 95:95–106CrossRefGoogle Scholar
  17. 17.
    Kodentsov AA, Rijnders MR, van Loo FJJ (1998) Periodic pattern formation in solid state reactions related to the Kirkendall effect. Acta Mater 46:6521–6528CrossRefGoogle Scholar
  18. 18.
    Bächli A, Nicolet M-A, Baud L, Jaussaud C, Madar R (1998) Nickel film on (001) SiC: thermally induced reactions. Mater Sci Eng B 56:11–25CrossRefGoogle Scholar
  19. 19.
    Ohdomari I, Sha S, Aochi H, Chikyow T, Suzuki S (1987) Investigation of thin-film Ni/single-crystal SiC interface reaction. J Appl Phys 62:3747–3750CrossRefGoogle Scholar
  20. 20.
    Dean CR, Robbie K, Madsen LD (2007) Effect of the substrate surface condition on the Ni(thin film)/SiC(0001) interfacial reaction. J Mater Res 22:2522–2530CrossRefGoogle Scholar
  21. 21.
    Nathan M, Ahearn JS (1991) On the nanometer-scale solid-state reactions at thin-film Ni/amorphous SiC and Co/amorphous SiC interfaces. J Appl Phys 70:811–820CrossRefGoogle Scholar
  22. 22.
    Edelstein AS, Gillespie DJ, Cheng SF, Perepezko JH, Landry K (1999) Reactions at amorphous SiC/Ni interfaces. J Appl Phys 85:2636–2641CrossRefGoogle Scholar
  23. 23.
    Fujimura T, Tanaka S-I (1999) In-situ high temperature X-ray diffraction study of Ni/SiC interface reactions. J Mater Sci 34:235–239. CrossRefGoogle Scholar
  24. 24.
    Chou TC, Joshi A, Wadsworth J (1991) Solid state reactions of SiC with Co, Ni, and Pt. J Mater Res 6:796–809CrossRefGoogle Scholar
  25. 25.
    Hähnel A, Ischenko V, Woltersdorf J (2008) Oriented growth of silicide and carbon in SiC-based sandwich structures with nickel. Mater Chem Phys 110:303–310CrossRefGoogle Scholar
  26. 26.
    Jackson MR, Mehan RL, Davis AM, Hall EL (1983) Solid state SiC/Ni alloy reaction. Met Trans A 14A:355–364CrossRefGoogle Scholar
  27. 27.
    Kao CR, Chang YA (1993) A theoretical analysis for the formation of periodic layered structure in ternary diffusion couples involving a displacement type of reactions. Acta Metall Mater 41:3463–3472CrossRefGoogle Scholar
  28. 28.
    Rossi PJ, Zotov N, Bischoff E, Mittemeijer EJ (2016) Dependence of intermetallic compound formation on the sublayer stacking sequence in Ag–Sn bilayer thin films. Acta Mater 103:174–183CrossRefGoogle Scholar
  29. 29.
    Finetti M, Suni I, Nicolet M-A (1984) Titanium nitride as a diffusion barrier between nickel silicide and aluminum. J Electron Mater 13:327–340CrossRefGoogle Scholar
  30. 30.
    Jeurgens LPH, Sloof WG, Tichelaar FD, Mittemeijer EJ (2002) Structure and morphology of aluminium-oxide films formed by thermal oxidation of aluminium. Thin Solid Films 418:89–101CrossRefGoogle Scholar
  31. 31.
    Tu KN, Ottaviani G, Gösele U, Föll H (1983) Intermetallic compound formation in thin-film and in bulk samples of the Ni-Si binary system. J Appl Phys 54:758–763CrossRefGoogle Scholar
  32. 32.
    Weller K, Jeurgens LPH, Wang Z, Mittemeijer EJ (2015) Thermal oxidation of amorphous Al0.44Zr0.56 alloys. Acta Mater 87:187–200CrossRefGoogle Scholar
  33. 33.
    Du Y, Schuster JC (1999) Experimental investigations and thermodynamic descriptions of the Ni-Si and C-Ni-Si Systems. Met Mater Trans A 30:2409–2418CrossRefGoogle Scholar
  34. 34.
    Mittemeijer EJ (2011) Fundamentals of materials science—The microstructure-property relationship using metals as model systems. Springer-Verlag, Berlin HeidelbergGoogle Scholar
  35. 35.
    Woehrle T, Leineweber A, Mittemeijer EJ (2012) Microstructural and phase evolution of compound layers growing on α–iron during gaseous nitrocarburizing. Metall Mater Trans A 43:2401–2413CrossRefGoogle Scholar
  36. 36.
    Göhring H, Leineweber A, Mittemeijer EJ (2016) The α + ε two-phase equilibrium in the Fe-N-C system: experimental investigations and thermodynamic calculations. Metall Mater Trans A 47:4411–4424CrossRefGoogle Scholar
  37. 37.
    d’Heurle FM, Gas P (1986) Kinetics of formation of silicides: a review. J Mater Res 1:205–221CrossRefGoogle Scholar
  38. 38.
    Lim CS, Nickel H, Naoumidis A, Gyarmati E (1997) Interfacial reaction and adhesion between SiC and thin sputtered nickel films. J Mater Sci 32:6567–6572. CrossRefGoogle Scholar
  39. 39.
    Wang Z, Jeurgens LP, Mittemeijer EJ (eds) (2015) Metal-induced crystallization: fundamentals and applications. Pan, StanfordGoogle Scholar
  40. 40.
    Wang Z, Jeurgens LPH, Wang JY, Mittemeijer EJ (2009) Fundamentals of metal-induced crystallization of amorphous semiconductors. Adv Eng Mater 11:131–135CrossRefGoogle Scholar
  41. 41.
    Wang ZM, Wang JY, Jeurgens LPH, Mittemeijer EJ (2008) Thermodynamics and mechanism of metal-induced crystallization in immiscible alloy systems: experiments and calculations on Al/a-Ge and Al/a-Si bilayers. Phys Rev B 77:045424-1–045424-15Google Scholar
  42. 42.
    Schiepers RCJ (1991) The interaction of SiC with Fe, Ni and their alloys. Technical University of EindhovenGoogle Scholar
  43. 43.
    Escobedo-Cousin E, Vassilevski K, Hopf T, Wright N, O’Neill A, Horsfall A, Goss J, Cumpson P (2013) Local solid phase growth of few-layer graphene on silicon carbide from nickel silicide supersaturated with carbon. J Appl Phys 113:114309CrossRefGoogle Scholar
  44. 44.
    Gösele U, Tu KN (1982) Growth kinetics of planar binary diffusion couples: ’’Thin-film case’’ versus ’’bulk cases’’. J Appl Phys 53:3252–3260CrossRefGoogle Scholar
  45. 45.
    Kihlgren TE, Eash JT (1948) Carbon-nickel constitution diagram. In: ASM (ed) Metals handbook, pp. 1183Google Scholar
  46. 46.
    Lander JJ, Kern HE, Beach AL (1952) Solubility and diffusion coefficient of carbon in nickel: reaction rates of nickel-carbon alloys with barium oxide. J Appl Phys 23:1305–1309CrossRefGoogle Scholar
  47. 47.
    Nash P, Nash A (1987) The Ni–Si (nickel–silicon) system. Bull Alloy Phase Diagr 8:6–14CrossRefGoogle Scholar
  48. 48.
    Shatynski SR (1979) The thermochemistry of transition metal carbides. Oxid Met 13:105–118CrossRefGoogle Scholar
  49. 49.
    Schlesinger ME (1990) Thermodynamics of solid transition-metal silicides. Chem Rev 90:607–628CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Max Planck Institute for Intelligent Systems (FORMERLY Max Planck Institute for Metals Research)StuttgartGermany
  2. 2.School of Materials Science and EngineeringTianjin UniversityTianjinChina
  3. 3.Institute for Materials ScienceUniversity of StuttgartStuttgartGermany

Personalised recommendations