Skip to main content
Log in

Sensing properties of barium titanate nanoceramics tailored by doping and microstructure control

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

BaTiO3 nanopowders doped with La and co-doped with La/Mn were prepared by auto-combustion and Pechini methods, respectively. The influence of the synthesis methods, dopants and sintering temperature on the BaTiO3 structure and its potential to be used as humidity and/or H2 gas sensor were studied. The optimization of all process parameters was performed to obtain adequate microstructure for the development of good sensor properties. The difference in the grain size between the La-doped and La/Mn co-doped samples and the formation of different types of defect structures in these ceramics were found to be significant for the desired electrical and ferroelectric properties. The La-doped ceramics with a pseudo-cubic structure showed the highest potential for gas sensors. The materials obtained by the Pechini method had a tetragonal structure and showed the best response, i.e., the change in electrical resistivity by four orders of magnitude in the humid atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Buscaglia MT, Buscaglia V, Viviani M, Nanni P, Hanuskova M (2000) Influence of foreign ions on the crystal structure of BaTiO3. J Eur Ceram Soc 20:1997–2007

    Article  Google Scholar 

  2. Moulson AJ, Herbert JM (2003) Electroceramics, 2nd edn. Wiley, London

    Book  Google Scholar 

  3. Vijatović Petrović MM, Bobić JD, Ramoška T, Banys J, Stojanović BD (2011) Electrical properties of lanthanum doped barium titanate ceramics. Mater Charact 62:1000–1006

    Article  Google Scholar 

  4. Vijatovic Petrovic MM, Bobic JD, Ramoska T, Banys J, Stojanovic BD (2011) Antimony doping effect on barium titanate structure and electrical properties. Ceram Int 37:2669–2677

    Article  Google Scholar 

  5. Kumar P, Singh S, Spah M, Juneja JK, Prekash C, Raina KK (2010) Synthesis and dielectric properties of substituted barium titanate ceramics. J Alloy Compd 489:59–63

    Article  Google Scholar 

  6. Guo HZ, Mudryk Y, Ahmad MI, Pang XC, Zhao L, Akinc M, Pecharsky VK, Bowler N, Lin ZQ, Tan X (2012) Structure evolution and dielectric behavior of polystyrene-capped barium titanate nanoparticles. J Mater Chem 22:23944–23951

    Google Scholar 

  7. Vijatovic Petrovic MM, Bobic JD (2018) Perovskite and Aurivillius: types of ferroelectric metal oxides. In: Stojanovic BD (ed) Magnetic, ferroelectric, and multiferroic metal oxides. Elsevier Publisher, Amsterdam, pp 35–49

    Chapter  Google Scholar 

  8. Brzozowski E, Castro MS (2005) Grain growth control in Nb-doped BaTiO3. J Mater Process Technol 168:464–470

    Article  Google Scholar 

  9. Zhao C, Wu B, Cheng Thong H, Wu J (2018) Improved temperature stability and high piezoelectricity in lead-free barium titanate-based ceramics. J Eur Ceram Soc. https://doi.org/10.1016/j.jeurceramsoc.2018.08.004

    Google Scholar 

  10. Vijatovic Petrovic MM, Bobic JD, Grigalaitis R, Stojanovic BD, Banys J (2013) La-doped and La/Mn-co-doped barium titanate ceramics. Acta Phys Pol A 124:155–160

    Article  Google Scholar 

  11. Chatterjee S, Stojanovic B, Maiti H (2003) Effect of additives and powder preparation techniques on PTCR properties of barium titanate. Mater Chem Phys 78:702–710

    Article  Google Scholar 

  12. Farahani H, Wagiran R, Nizar Hamidon M (2014) Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14:7881–7939

    Article  Google Scholar 

  13. Chen Z, Lu C (2005) Humidity sensors: a review of materials and methods. Sensor Lett 3:274–295

    Article  Google Scholar 

  14. Viviani M, Buscaglia MT, Buscaglia V, Leoni M, Nanni P (2001) Barium perovskites as humidity sensing materials. J Eur Ceram Soc 21:1981–1984

    Article  Google Scholar 

  15. Wang J, Wang X, Wang X (2005) Study on dielectric properties of humidity sensing nanometer materials. Sensors Actuators B 108:445–449

    Article  Google Scholar 

  16. Vijatovic MM, Stojanovic BD, Bobic JD, Ramoska T, Bowen P (2010) Properties of lanthanum doped BaTiO3 produced from nanopowders. Ceram Int 36:1817–1824

    Article  Google Scholar 

  17. Dzunuzovic AS, Vijatovic Petrovic MM, Stojadinovic BS, Ilic NI, Bobic JD, Foschini CR, Zaghete MA, Stojanovic BD (2015) Multiferroic (NiZn)Fe2O4–BaTiO3 composites prepared from nanopowders by auto-combustion method. Ceram Int 41:13189–13200

    Article  Google Scholar 

  18. Dwivedi RK, Parkash O, Kumar D, Srivastava KK, Singh P (2007) Effect of simultaneous substitution of La and Mn on dielectric behavior of barium titanate ceramics. J Mater Sci 42:5490–5496 10.1007/s10853-006-0985-8

    Article  Google Scholar 

  19. Vijatovic Petrovic MM, Bobic JD, Ursic H, Banys J, Stojanovic BD (2013) The electrical properties of chemically obtained barium titanate improved by attrition milling. J Sol Gel Sci Technol 67:267–272

    Article  Google Scholar 

  20. Li T, Li L, Zhao J, Gui Z (2000) Modulation effect of Mn2+ on dielectric properties of BaTiO3 -based X7R materials. Mater Lett 44:1–5

    Article  Google Scholar 

  21. Cai W, Fu C, Lin Z, Deng X (2011) Vanadium doping effects on microstructure and dielectric properties of barium titanate ceramics. Ceram Int 37:3643–3650

    Article  Google Scholar 

  22. Tan Y, Zhang J, Wu Y, Wang C, Koval V, Shi B, Ye H, McKinnon R, Viola G, Yan H (2015) Unfolding grain size effects in barium titanate ferroelectric ceramics. Sci Rep 5:9953

    Article  Google Scholar 

  23. Buatip N, Promsawat N, Pisitpipathsin N, Namsar O, Pawasri P, Ounsung K, Phabsimma K, Rattanachan ST, Janphuang P, Projprapai S (2018) Investigation on electrical properties of BCZT ferroelectric ceramics prepared at various sintering conditions. Integr Ferroelectr 187:45–52

    Article  Google Scholar 

  24. Godara S, Kumar B (2015) Effect of Ba–Nb co-doping on the structural, dielectric, magnetic and ferroelectric properties of BiFeO3 nanoparticles. Ceram Int 41:6912–6919

    Article  Google Scholar 

  25. Chien Chiu F. (2014) A review on conduction mechanisms in dielectric films, advances in materials science and engineering, Hindawi Publishing Corporation, 578168

  26. Sharma S, Shamim K, Ranjan A, Raib R, Kumari P, Sinha S (2015) Impedance and modulus spectroscopy characterization of lead free barium titanate ferroelectric ceramics. Ceram Int 41:7713–7722

    Article  Google Scholar 

  27. Moriwake H, Fisher C, Kuwabara A (2010) First-principles calculations of electronic structure and solution energies of Mn-doped BaTiO3. Jpn J Appl Phys 49:09MC01

    Article  Google Scholar 

  28. Chikada S, Kubota T, Honda A, Higai S, Motoyoshi Y, Wada N, Shiratsuyu K (2016) Interactions between Mn dopant and oxygen vacancy for insulation performance of BaTiO3. J Appl Phys 120:142122

    Article  Google Scholar 

  29. Thakur OP, Feteira A, Kundys B, Sinclair DC (2007) Influence of attrition milling on the electrical properties of undoped-BaTiO3. J Eur Ceram Soc 27:2577–2589

    Article  Google Scholar 

  30. Devi S, Jha AK (2009) Phase transition and electrical characteristics of tungsten substituted barium titanate. Phys B 404:4290–4294

    Article  Google Scholar 

  31. Kim Y, Ha SC, Kim K, Yang H, Choi SY, Kim YT, Park JT, Lee CH, Choi J, Paek J, Lee K (2005) Room-temperature semiconductor gas sensor based on nonstoichiometric tungsten oxide nanorod film. Appl Phys Lett 86:213105

    Article  Google Scholar 

  32. Farahani H, Wagiran R, Nizar Hamidon M (2014) Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14:7881–7939

    Article  Google Scholar 

  33. Yuasa M, Nagano T, Tachibana N, Kida T, Shimanoe K (2013) Catalytic combustion-type hydrogen sensor using BaTiO3-based PTC thermistor. J Am Ceram Soc 96:1789–1794

    Article  Google Scholar 

  34. Caballero AC, Villegas M, Fernandez JF, Viviani M, Buscaglia MT, Leoni M (1999) Effect of humidity on the electrical response of porous BaTiO3 ceramics. J Mater Sci Lett 18:1297–1299

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Ministry of Education, Science and Technological Development of Republic of Serbia for the financial support of this work (Projects III45021, III45007). The authors are thankful to Dr Zeljko Despotovic for experimental support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Vijatović Petrović.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijatović Petrović, M.M., Radojkovic, A., Bobić, J.D. et al. Sensing properties of barium titanate nanoceramics tailored by doping and microstructure control. J Mater Sci 54, 6038–6052 (2019). https://doi.org/10.1007/s10853-018-03308-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-03308-4

Navigation