Skip to main content

Advertisement

Log in

Polymer-derived SiCN ceramics as fillers for polymer composites with high dielectric constants

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High-dielectric-constant (high-ε) ceramic/polymer composites are an important class of advanced functional materials due to their applications in energy storage fields, such as embedded capacitors. Here, we synthesized novel polymer-derived silicon carbonitride (SiCN)-filled polyvinylidene fluoride (PVDF) composites by the tape-casting method. For comparison, commercial BaTiO3-filled PVDF composites were synthesized following the same process. The SiCN/PVDF composites showed much higher ε than the BaTiO3/PVDF composites over a broad frequency range (10−1–106 Hz). Furthermore, the SiCN/PVDF composites showed ultrahigh ε at low frequencies. The ε of the 40 vol% SiCN/PVDF composite was as high as 2600 at 10−1 Hz. Although the dielectric breakdown strengths of the SiCN/PVDF composites were slightly lower than those of the BT/PVDF composites, the calculated maximum energy storage density of the 40 vol% SiCN/PVDF composites (17.5 J cm−3) was much higher than that of 40 vol% BT/PVDF (0.773 J cm−3) at 10−1 Hz. This is the first report on the use of polymer-derived ceramics as a component of ceramic/polymer composites. The results indicate that the polymer-derived SiCN ceramics can serve as promising ceramic fillers for high-ε composites and that the obtained SiCN-filled composites have promising applications in energy storage fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Dang Z-M, Yuan J-K, Yao S-H, Liao R-J (2013) Flexible nanodielectric materials with high permittivity for power energy storage. Adv Mater 25:6334–6365. https://doi.org/10.1002/adma.201301752

    Article  CAS  Google Scholar 

  2. Chu B, Zhou X, Ren K et al (2006) A dielectric polymer with high electric energy density and fast discharge speed. Science 313:334–336. https://doi.org/10.1126/science.1127798

    Article  CAS  Google Scholar 

  3. Dang Z-M, Wang H-Y, Peng B, Nan C-W (2008) Effect of BaTiO3 size on dielectric property of BaTiO3/PVDF composites. J Electroceram 21:381–384. https://doi.org/10.1007/s10832-007-9201-8

    Article  CAS  Google Scholar 

  4. Xu R, Tian J, Zhu Q et al (2017) Effects of La-induced phase transition on energy storage and discharge properties of PLZST ferroelectric/antiferroelectric ceramics. Ceram Int 43:13918–13923. https://doi.org/10.1016/j.ceramint.2017.07.120

    Article  CAS  Google Scholar 

  5. Tarale AN, Premkumar S, Reddy VR, Mathe VL (2017) Microstructural evolution of 0.75PMN–0.25PT ferroelectrics synthesized by hydroxide co-precipitation method and their dielectric properties. J Mater Sci Mater Electron 28:5485–5497. https://doi.org/10.1007/s10854-016-6210-x

    Article  CAS  Google Scholar 

  6. Yoo J, Kim Y, Cho H, Jeong Y-H (2017) High piezoelectric d 31 coefficient and high T c in PMW-PNN-PZT ceramics sintered at low temperature. Sens Actuat Phys 255:160–165. https://doi.org/10.1016/j.sna.2016.12.020

    Article  CAS  Google Scholar 

  7. Tang H, Lin Y, Andrews C, Sodano HA (2011) Nanocomposites with increased energy density through high aspect ratio PZT nanowires. Nanotechnology 22:015702-1–015702-8. https://doi.org/10.1088/0957-4484/22/1/015702

    Article  CAS  Google Scholar 

  8. Wang M, Li WL, Feng Y et al (2015) Effect of BaTiO3 nanowires on dielectric properties and energy storage density of polyimide composite films. Ceram Int 41:13582–13588. https://doi.org/10.1016/j.ceramint.2015.07.153

    Article  CAS  Google Scholar 

  9. Jayakrishnan P, Ramesan MT (2018) Temperature dependence of the electrical conductivity of poly(anthranilic acid)/magnetite nanocomposites and the applicability of different conductivity models. Polym Compos 39:2791–2800. https://doi.org/10.1002/pc.24271

    Article  CAS  Google Scholar 

  10. Ramesan MT, Jayakrishnan P, Manojkumar TK, Mathew G (2018) Structural, mechanical and electrical properties biopolymer blend nanocomposites derived from poly (vinyl alcohol)/cashew gum/magnetite. Mater Res Express 5:015308. https://doi.org/10.1088/2053-1591/aaa25f

    Article  CAS  Google Scholar 

  11. Yang Y, Zhu B-P, Lu Z-H et al (2013) Polyimide/nanosized CaCu3Ti4O12 functional hybrid films with high dielectric permittivity. Appl Phys Lett 102:042904-1–042904-5. https://doi.org/10.1063/1.4789504

    Article  CAS  Google Scholar 

  12. Dang Z-M, Zhou T, Yao S-H et al (2009) Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv Mater 21:2077–2082. https://doi.org/10.1002/adma.200803427

    Article  CAS  Google Scholar 

  13. Bhandavat R, Kuhn W, Mansfield E et al (2012) Synthesis of polymer-derived ceramic Si(B)CN-carbon nanotube composite by microwave-induced interfacial polarization. ACS Appl Mater Interfaces 4:11–16. https://doi.org/10.1021/am201358s

    Article  CAS  Google Scholar 

  14. Lu B, Zhang Y (2014) Hot pressed SiC ceramics employing polymer-derived SiBCN as sintering aid. Mater Lett 137:483–486. https://doi.org/10.1016/j.matlet.2014.09.074

    Article  CAS  Google Scholar 

  15. Colombo P, Mera G, Riedel R, Sorarù GD (2010) Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics: polymer-derived ceramics. J Am Ceram Soc 93:1805–1837. https://doi.org/10.1111/j.1551-2916.2010.03876.x

    Article  CAS  Google Scholar 

  16. Wang K, Ma B, Wang Y, An L (2013) Complex impedance spectra of polymer-derived silicon oxycarbides. J Am Ceram Soc 96:1363–1365. https://doi.org/10.1111/jace.12356

    Article  CAS  Google Scholar 

  17. Wang K, Ma B, Li X et al (2014) Effect of pyrolysis temperature on the structure and conduction of polymer-derived SiC. J Am Ceram Soc 97:2135–2138. https://doi.org/10.1111/jace.12931

    Article  CAS  Google Scholar 

  18. Ma B, Wang Y, Wang K et al (2015) Frequency-dependent conductive behavior of polymer-derived amorphous silicon carbonitride. Acta Mater 89:215–224. https://doi.org/10.1016/j.actamat.2015.02.020

    Article  CAS  Google Scholar 

  19. Su D, Li Y-L, Feng Y, Jin J (2009) Electrochemical properties of polymer-derived SiCN materials as the anode in lithium ion batteries. J Am Ceram Soc 92:2962–2968. https://doi.org/10.1111/j.1551-2916.2009.03317.x

    Article  CAS  Google Scholar 

  20. Pradeep VS, Ayana DG, Graczyk-Zajac M et al (2015) High rate capability of SiOC ceramic aerogels with tailored porosity as anode materials for Li-ion batteries. Electrochim Acta 157:41–45. https://doi.org/10.1016/j.electacta.2015.01.088

    Article  CAS  Google Scholar 

  21. Huo X, Li W, Zhu J et al (2015) Composite based on Fe3O4 @BaTiO3 particles and polyvinylidene fluoride with excellent dielectric properties and high energy density. J Phys Chem C 119:25786–25791. https://doi.org/10.1021/acs.jpcc.5b08809

    Article  CAS  Google Scholar 

  22. Facchetti A, Yoon M-H, Marks TJ (2005) Gate dielectrics for organic field-effect transistors: new opportunities for organic electronics. Adv Mater 17:1705–1725. https://doi.org/10.1002/adma.200500517

    Article  CAS  Google Scholar 

  23. Jiongxin Lu, Wong C (2008) Recent advances in high-k nanocomposite materials for embedded capacitor applications. IEEE Trans Dielectr Electr Insul 15:1322–1328. https://doi.org/10.1109/TDEI.2008.4656240

    Article  Google Scholar 

  24. Yue Z, Zhao J, Yang G, Li L (2010) Electric field-dependent properties of BaTiO3-based multilayer ceramic capacitors. Ferroelectrics 401:56–60. https://doi.org/10.1080/00150191003670424

    Article  CAS  Google Scholar 

  25. Ning N, Ma Q, Liu S et al (2015) Tailoring dielectric and actuated properties of elastomer composites by bioinspired poly(dopamine) encapsulated graphene oxide. ACS Appl Mater Interfaces 7:10755–10762. https://doi.org/10.1021/acsami.5b00808

    Article  CAS  Google Scholar 

  26. Maiti S, Shrivastava NK, Khatua BB (2013) Reduction of percolation threshold through double percolation in melt-blended polycarbonate/acrylonitrile butadiene styrene/multiwall carbon nanotubes elastomer nanocomposites. Polym Compos 34:570–579. https://doi.org/10.1002/pc.22462

    Article  CAS  Google Scholar 

  27. Kleebe H-J, Störmer H, Trassl S, Ziegler G (2001) Thermal stability of SiCN ceramics studied by spectroscopy and electron microscopy: thermal stability of SiCN ceramics. Appl Organomet Chem 15:858–866. https://doi.org/10.1002/aoc.243

    Article  CAS  Google Scholar 

  28. Li Q, Yin X, Feng L (2012) Dielectric properties of Si3N4–SiCN composite ceramics in X-band. Ceram Int 38:6015–6020. https://doi.org/10.1016/j.ceramint.2012.03.045

    Article  CAS  Google Scholar 

  29. Liu S, Xue S, Zhang W et al (2014) Significantly enhanced dielectric property in PVDF nanocomposites flexible films through a small loading of surface-hydroxylated Ba0.6Sr0.4TiO3 nanotubes. J Mater Chem A 2:18040–18046. https://doi.org/10.1039/C4TA04051A

    Article  CAS  Google Scholar 

  30. Dang Z-M, Wang H-Y, Zhang Y-H, Qi J-Q (2005) Morphology and dielectric property of homogenous BaTiO3/PVDF nanocomposites prepared via the natural adsorption action of nanosized BaTiO3. Macromol Rapid Commun 26:1185–1189. https://doi.org/10.1002/marc.200500137

    Article  CAS  Google Scholar 

  31. Song Y, Shen Y, Liu H et al (2012) Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix. J Mater Chem 22:16491–16498. https://doi.org/10.1039/c2jm32579a

    Article  CAS  Google Scholar 

  32. Zhou T, Zha J-W, Cui R-Y et al (2011) Improving dielectric properties of BaTiO3/ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanoparticles. ACS Appl Mater Interfaces 3:2184–2188. https://doi.org/10.1021/am200492q

    Article  CAS  Google Scholar 

  33. Ehrhardt C, Fettkenhauer C, Glenneberg J et al (2014) Enhanced dielectric properties of sol–gel–BaTiO3/P(VDF-HFP) composite films without surface functionalization. RSC Adv 4:40321–40329. https://doi.org/10.1039/C4RA03715D

    Article  CAS  Google Scholar 

  34. Li X, Chen F, Wang Y (2017) Colossal dielectric constant and interfacial charge polarization in a polymer-derived amorphous silicon carbonitride. Ceram Int 43:11623–11626. https://doi.org/10.1016/j.ceramint.2017.05.337

    Article  CAS  Google Scholar 

  35. Ma B, Wang Y, Chen Y, Gao Y (2017) Dielectric property and interfacial polarization of polymer-derived amorphous silicon carbonitride. Ceram Int 43:12209–12212. https://doi.org/10.1016/j.ceramint.2017.06.081

    Article  CAS  Google Scholar 

  36. Jasna VC, Ramesan MT (2018) Fabrication of novel nanocomposites from styrene-butadiene rubber/zinc sulphide nanoparticles. J Mater Sci 53:8250–8262. https://doi.org/10.1007/s10853-018-2173-z

    Article  CAS  Google Scholar 

  37. Xu N, Hu L, Zhang Q et al (2015) Significantly enhanced dielectric performance of poly(vinylidene fluoride-co-hexafluoropylene)-based composites filled with hierarchical flower-like TiO2 particles. ACS Appl Mater Interfaces 7:27373–27381. https://doi.org/10.1021/acsami.5b08987

    Article  CAS  Google Scholar 

  38. Kim P, Doss NM, Tillotson JP et al (2009) High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer. ACS Nano 3:2581–2592. https://doi.org/10.1021/nn9006412

    Article  CAS  Google Scholar 

  39. Hou Y, Deng Y, Wang Y, Gao H (2015) Uniform distribution of low content BaTiO3 nanoparticles in poly(vinylidene fluoride) nanocomposite: toward high dielectric breakdown strength and energy storage density. RSC Adv 5:72090–72098. https://doi.org/10.1039/C5RA10438F

    Article  CAS  Google Scholar 

  40. Dang Z-M, Yuan J-K, Zha J-W et al (2012) Fundamentals, processes and applications of high-permittivity polymer-matrix composites. Prog Mater Sci 57:660–723. https://doi.org/10.1016/j.pmatsci.2011.08.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51372202, #51602264, #51532003, and #51732009) and the Science and Technology Project in Sichuan Province (2016JY0112).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Gao or Yiguang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, D., Chen, F., Gao, Y. et al. Polymer-derived SiCN ceramics as fillers for polymer composites with high dielectric constants. J Mater Sci 54, 6982–6990 (2019). https://doi.org/10.1007/s10853-018-03299-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-03299-2

Navigation