Skip to main content

Advertisement

Log in

Review: titanium–titanium boride composites

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Titanium in situ reinforced with titanium boride (TiBw) has garnered significant attention as one of the most promising titanium composites today. A significant number of processing approaches have been reported on the fabrication of these unique composites. This brief review provides an update on recent activities within the area focusing largely on research conducted over the past 5 years. Approaches discussed include bulk deformation processes such as rolling, 2D forging, equal channel angular pressing, (laser and non-laser-based) additive manufacturing, and new microstructural designs implemented for this composite system. Moreover, the potential of this composite as a biomaterial is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Chaudhari R, Bauri R (2018) A novel functionally gradient Ti/TiB/TiC hybrid composite with wear resistant surface layer. J Alloys Compd 744:438–444. https://doi.org/10.1016/j.jallcom.2018.02.058

    Article  CAS  Google Scholar 

  2. Abkowitz S, Abkowitz SM, Fisher H, Schwartz PJ (2004) CermeTi® discontinuously reinforced Ti-matrix composites: manufacturing, properties, and applications. JOM 56:37–41. https://doi.org/10.1007/s11837-004-0126-2

    Article  CAS  Google Scholar 

  3. Attar H, Bönisch M, Calin M et al (2014) Selective laser melting of in situ titanium-titanium boride composites: processing, microstructure and mechanical properties. Acta Mater 76:13–22. https://doi.org/10.1016/j.actamat.2014.05.022

    Article  CAS  Google Scholar 

  4. Zhang C, Li X, Zhang S et al (2017) Effects of direct rolling deformation on the microstructure and tensile properties of the 2.5 vol% (TiBw + TiCp)/Ti composites. Mater Sci Eng A 684:645–651. https://doi.org/10.1016/j.msea.2016.12.113

    Article  CAS  Google Scholar 

  5. Gaisin RA, Imayev VM, Imayev RM (2017) Effect of hot forging on microstructure and mechanical properties of near α titanium alloy/TiB composites produced by casting. J Alloys Compd 723:385–394. https://doi.org/10.1016/j.jallcom.2017.06.287

    Article  CAS  Google Scholar 

  6. Qiu P, Li H, Sun X et al (2017) Reinforcements stimulated dynamic recrystallization behavior and tensile properties of extruded (TiB + TiC + La2O3)/Ti6Al4V composites. J Alloys Compd 699:874–881. https://doi.org/10.1016/j.jallcom.2016.12.418

    Article  CAS  Google Scholar 

  7. Xiang J, Han Y, Li J et al (2017) Microstructure characteristics of ECAP-processed (TiB + La2O3)/Ti–6Al–4V composites. J Alloys Compd 726:57–66. https://doi.org/10.1016/j.jallcom.2017.07.294

    Article  CAS  Google Scholar 

  8. Ghesmati Tabrizi S, Sajjadi SA, Babakhani A, Lu W (2015) Influence of spark plasma sintering and subsequent hot rolling on microstructure and flexural behavior of in situ TiB and TiC reinforced Ti6Al4V composite. Mater Sci Eng A 624:271–278. https://doi.org/10.1016/j.msea.2014.11.036

    Article  CAS  Google Scholar 

  9. Ozerov MS, Klimova MV, Stepanov ND, Zherebtsov SV (2018) Microstructure evolution of a TI/TIB metal-matrix composite during high-temperature deformation. Mater Phys Mech 38:54–63. https://doi.org/10.18720/MPM.3812018_8

    Article  Google Scholar 

  10. Patel VV, El-Desouky A, Garay JE, Morsi K (2009) Pressure-less and current-activated pressure-assisted sintering of titanium dual matrix composites: effect of reinforcement particle size. Mater Sci Eng A 507:161–166

    Article  CAS  Google Scholar 

  11. Song X, Wang L, Niinomi M et al (2015) Fatigue characteristics of a biomedical β-type titanium alloy with titanium boride. Mater Sci Eng A 640:154–164. https://doi.org/10.1016/j.msea.2015.05.078

    Article  CAS  Google Scholar 

  12. Makau FM, Morsi K, Gude N et al (2013) Viability of Titanium-Titanium Boride Composite as a Biomaterial. ISRN Biomater. https://doi.org/10.5402/2013/970535

    Article  Google Scholar 

  13. Zhang L-C, Attar H (2016) Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review. Adv Eng Mater 18:463–475. https://doi.org/10.1002/adem.201500419

    Article  CAS  Google Scholar 

  14. Tjong SC, Mai YW (2008) Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites. Compos Sci Technol 68:583–601

    Article  CAS  Google Scholar 

  15. Morsi K, Patel VV (2007) Processing and properties of titanium-titanium boride (TiBw) matrix composites—a review. J Mater Sci 42:2037–2047. https://doi.org/10.1007/s10853-006-0776-2

    Article  CAS  Google Scholar 

  16. German RM (2005) Powder metallurgy and particulate materials processing: the processes, materials, products, properties and applications. Metal Powder Industries Federation, Princeton

    Google Scholar 

  17. Selvakumar M, Chandrasekar P, Mohanraj M et al (2015) Role of powder metallurgical processing and TiB reinforcement on mechanical response of Ti–TiB composites. Mater Lett 144:58–61. https://doi.org/10.1016/j.matlet.2014.12.126

    Article  CAS  Google Scholar 

  18. Garay JE, Anselmi-Tamburini U, Munir ZA (2003) Enhanced growth of intermetallic phases in the Ni-Ti system by current effects. Acta Mater 51:4487–4495. https://doi.org/10.1016/S1359-6454(03)00284-2

    Article  CAS  Google Scholar 

  19. Ozerov M, Stepanov N, Kolesnikov A et al (2017) Brittle-to-ductile transition in a Ti–TiB metal-matrix composite. Mater Lett 187:28–31. https://doi.org/10.1016/j.matlet.2016.10.060

    Article  CAS  Google Scholar 

  20. Imayev V, Gaisin R, Gaisina E et al (2014) Effect of hot forging on microstructure and tensile properties of Ti–TiB based composites produced by casting. Mater Sci Eng A 609:34–41. https://doi.org/10.1016/j.msea.2014.04.091

    Article  CAS  Google Scholar 

  21. Sahay S, Ravichandran K, Atri R et al (1999) Evolution of microstructure and phases in in situ processed Ti–TiB composites containing high volume fractions of TiB whiskers. J Mater Res 14:4214–4223

    Article  CAS  Google Scholar 

  22. Koo MY, Park JS, Park MK et al (2012) Effect of aspect ratios of in situ formed TiB whiskers on the mechanical properties of TiB w/Ti–6Al-4V composites. Scr Mater 66:487–490

    Article  CAS  Google Scholar 

  23. Morsi K, Patel VV, Moon KS, Garay JE (2008) Current-activated pressure-assisted sintering (CAPAS) and nanoindentation mapping of dual matrix composites. J Mater Sci 43:4050–4056. https://doi.org/10.1007/s10853-007-2225-2

    Article  CAS  Google Scholar 

  24. Panda KB, Chandran KSR (2006) First principles determination of elastic constants and chemical bonding of titanium boride (TiB) on the basis of density functional theory. Acta Mater 54:1641–1657. https://doi.org/10.1016/j.actamat.2005.12.003

    Article  CAS  Google Scholar 

  25. Lutjering G, Williams J (2007) Titanium, 2nd edn. Springer, Berlin

    Google Scholar 

  26. Fan Z, Miodownik A, Chandrasekaran L, Ward-Close M (1994) The Young’ s moduli of in situ Ti/TiB composites obtained by rapid solidification processing. J Mater Sci 29:1127–1134. https://doi.org/10.1007/BF00351442

    Article  CAS  Google Scholar 

  27. Gorsse S, Chaminade J, Le Petitcorps Y (1998) In situ preparation of titanium base composites reinforced by TiB single crystals using a powder metallurgy technique. Compos Part A Appl Sci Manuf 29:1229–1234

    Article  Google Scholar 

  28. Gorsse S, Miracle DB (2003) Mechanical properties of Ti–6Al–4V/TiB composites with randomly oriented and aligned TiB reinforcements. Acta Mater 51:2427–2442. https://doi.org/10.1016/S1359-6454(02)00510-4

    Article  CAS  Google Scholar 

  29. Dubey S, Soboyejo WO, Srivatsan TS (1997) Deformation and fracture properties of damage tolerant in-situ titanium matrix composites. Appl Compos Mater 4:361–374. https://doi.org/10.1109/SMC.2015.517

    Article  CAS  Google Scholar 

  30. Feng H, Zhou Y, Jia D, Meng Q (2004) Microstructure and mechanical properties of in situ TiB reinforced titanium matrix composites based on Ti–FeMo–B prepared by spark plasma sintering. Compos Sci Technol 64:2495–2500

    Article  CAS  Google Scholar 

  31. Cox H (1952) The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 3:72–79

    Article  Google Scholar 

  32. Soboyejo WO, Lederich RJ, Sastry SML (1994) Mechanical behavior of damage tolerant TiB whisker-reinforced in situ titanium matrix composites. Acta Metall Mater 42:2579–2591. https://doi.org/10.1016/0956-7151(94)90199-6

    Article  CAS  Google Scholar 

  33. Taya M, Arsenault RJ (1987) Comparison between a shear lag type model and an eshelby type model in predicting the mechanical properties of a short fiber composite. Scr Metall 21:349–354

    Article  CAS  Google Scholar 

  34. George R, Kashyap KT, Rahul R, Yamdagni S (2005) Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scr Mater 53:1159–1163. https://doi.org/10.1016/j.scriptamat.2005.07.022

    Article  CAS  Google Scholar 

  35. Lu H, Zhang D, Gabbitas B et al (2014) Synthesis of a TiBw/Ti6Al4V composite by powder compact extrusion using a blended powder mixture. J Alloys Compd 606:262–268

    Article  CAS  Google Scholar 

  36. Zhang W, Wang M, Chen W et al (2015) Evolution of inhomogeneous reinforced structure in TiBw/Ti–6AL–4V composite prepared by pre-sintering and canned β extrusion. Mater Des 88:471–477

    Article  CAS  Google Scholar 

  37. Guo X, Lu W, Wang L, Qin J (2014) A research on the creep properties of titanium matrix composites rolled with different deformation degrees. Mater Des 63:50–55. https://doi.org/10.1016/j.matdes.2014.05.063

    Article  CAS  Google Scholar 

  38. Ghesmati Tabrizi S, Sajjadi SA, Babakhani A, Lu W (2017) Analytical and experimental investigation of the effect of SPS and hot rolling on the microstructure and flexural behavior of Ti6Al4V matrix reinforced with in situ TiB and TiC. J Alloys Compd 692:734–744. https://doi.org/10.1016/j.jallcom.2016.09.026

    Article  CAS  Google Scholar 

  39. Li S, Kondoh K, Imai H et al (2016) Strengthening behavior of in situ-synthesized (TiC-TiB)/Ti composites by powder metallurgy and hot extrusion. Mater Des 95:127–132. https://doi.org/10.1016/j.matdes.2016.01.092

    Article  CAS  Google Scholar 

  40. Zhang J, Ke W, Ji W et al (2015) Microstructure and properties of insitu titanium boride (TiB)/titanium (TI) composites. Mater Sci Eng A 648:158–163. https://doi.org/10.1016/j.msea.2015.09.067

    Article  CAS  Google Scholar 

  41. Tsang HT, Chao CG, Ma C (1997) Tensile and creep properties of in situ TiB/Ti MMC. Scr Mater 37:1359–1365

    Article  CAS  Google Scholar 

  42. Imayev VM, Gaisin RA, Imayev RM (2015) Effect of boron additions and processing on microstructure and mechanical properties of a titanium alloy Ti–6.5Al–3.3Mo–0.3Si. Mater Sci Eng A 641:71–83

    Article  CAS  Google Scholar 

  43. Hong M, Wu D, Chen RS, Du XH (2014) Ductility enhancement of EW75 alloy by multi-directional forging. J Magnes Alloy 2:317–324. https://doi.org/10.1016/j.jma.2014.11.005

    Article  CAS  Google Scholar 

  44. Zhang CJ, Qu JP, Wu J et al (2018) A titanium composite with dual reinforcements of micrometer sized TiB and submicrometer sized Y2O3. Mater Lett 233:242–245. https://doi.org/10.1016/j.matlet.2018.09.012

    Article  CAS  Google Scholar 

  45. Morsi K, Patel VV, Naraghi S, Garay JE (2008) Processing of titanium-titanium boride dual matrix composites. J Mater Process Technol 196:236–242

    Article  CAS  Google Scholar 

  46. Wang B, Huang LJ, Geng L, Yu ZS (2017) Modification of microstructure and tensile property of TiBw/near-α Ti composites by tailoring TiBw distribution and heat treatment. J Alloys Compd 690:424–430. https://doi.org/10.1016/j.jallcom.2016.08.138

    Article  CAS  Google Scholar 

  47. Cai C, Song B, Qiu C et al (2017) Hot isostatic pressing of in situ TiB/Ti–6Al–4V composites with novel reinforcement architecture, enhanced hardness and elevated tribological properties. J Alloys Compd 710:364–374. https://doi.org/10.1016/j.jallcom.2017.03.160

    Article  CAS  Google Scholar 

  48. Hu H, Huang L, Geng L et al (2014) Oxidation behavior of TiB-whisker-reinforced Ti60 alloy composites with three-dimensional network architecture. Corros Sci 85:7–14. https://doi.org/10.1016/j.corsci.2014.03.033

    Article  CAS  Google Scholar 

  49. Huang L, Qian M, Liu Z et al (2018) In situ preparation of TiB nanowires for high-performance Ti metal matrix nanocomposites. J Alloys Compd 735:2640–2645. https://doi.org/10.1016/j.jallcom.2017.11.238

    Article  CAS  Google Scholar 

  50. Liu BX, Huang LJ, Geng L et al (2014) Effects of reinforcement volume fraction on tensile behaviors of laminated Ti–TiBw/Ti composites. Mater Sci Eng A 610:344–349. https://doi.org/10.1016/j.msea.2014.05.057

    Article  CAS  Google Scholar 

  51. Morsi K, Patel VV, Naraghi S, Garay JE (2008) Processing of titanium-titanium boride dual matrix composites. J Mater Process Technol 196:236–242. https://doi.org/10.1016/j.jmatprotec.2007.05.047

    Article  CAS  Google Scholar 

  52. Deng X, Patterson BR, Chawla KK et al (2002) Microstructure/hardness relationship in a dual composite. J Mater Sci Lett 21:707–709. https://doi.org/10.1023/A:1015733005094

    Article  CAS  Google Scholar 

  53. Morsi K, Esawi AMK, Borah P et al (2010) Properties of single and dual matrix aluminum-carbon nanotube composites processed via spark plasma extrusion (SPE). Mater Sci Eng A 527:5686–5690. https://doi.org/10.1016/j.msea.2010.05.081

    Article  CAS  Google Scholar 

  54. Liu BX, Huang LJ, Geng L et al (2014) Gradient grain distribution and enhanced properties of novel laminated Ti–TiBw/Ti composites by reaction hot-pressing. Mater Sci Eng A 595:257–265. https://doi.org/10.1016/j.msea.2013.12.013

    Article  CAS  Google Scholar 

  55. Liu BX, Huang LJ, Wang B, Geng L (2014) Effect of pure Ti thickness on the tensile behavior of laminated Ti–TiBw/Ti composites. Mater Sci Eng A 617:115–120. https://doi.org/10.1016/j.msea.2014.08.065

    Article  CAS  Google Scholar 

  56. Qin S, Cui X, Tian Z et al (2017) Synthesis and mechanical properties of innovative (TiB/Ti)-Ti3Al micro-laminated composites. J Alloys Compd 700:122–129. https://doi.org/10.1016/j.jallcom.2017.01.047

    Article  CAS  Google Scholar 

  57. Attar H, Ehtemam-Haghighi S, Kent D, Dargusch MS (2018) Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: a review. Int J Mach Tools Manuf 133:85–102. https://doi.org/10.1016/j.ijmachtools.2018.06.003

    Article  Google Scholar 

  58. Hu Y, Cong W, Wang X et al (2018) Laser deposition-additive manufacturing of TiB-Ti composites with novel three-dimensional quasi-continuous network microstructure: effects on strengthening and toughening. Compos Part B Eng 133:91–100. https://doi.org/10.1016/j.compositesb.2017.09.019

    Article  CAS  Google Scholar 

  59. Hu Y, Zhao B, Ning F et al (2017) In-situ ultrafine three-dimensional quasi-continuous network microstructural TiB reinforced titanium matrix composites fabrication using laser engineered net shaping. Mater Lett 195:116–119. https://doi.org/10.1016/j.matlet.2017.02.112

    Article  CAS  Google Scholar 

  60. Attar H, Prashanth KG, Zhang LC et al (2015) Effect of powder particle shape on the properties of in situ Ti–TiB composite materials produced by selective laser melting. J Mater Sci Technol 31:1001–1005. https://doi.org/10.1016/j.jmst.2015.08.007

    Article  Google Scholar 

  61. Attar H, Bönisch M, Calin M et al (2014) Comparative study of microstructures and mechanical properties of in situ Ti–TiB composites produced by selective laser melting, powder metallurgy, and casting technologies. J Mater Res 29:1941–1950. https://doi.org/10.1557/jmr.2014.122

    Article  CAS  Google Scholar 

  62. Sheydaeian E, Toyserkani E (2018) A new approach for fabrication of titanium-titanium boride periodic composite via additive manufacturing and pressure-less sintering. Compos Part B Eng 138:140–148. https://doi.org/10.1016/j.compositesb.2017.11.035

    Article  CAS  Google Scholar 

  63. Bermingham MJ, Kent D, Zhan H et al (2015) Controlling the microstructure and properties of wire arc additive manufactured Ti–6Al–4V with trace boron additions. Acta Mater 91:289–303. https://doi.org/10.1016/j.actamat.2015.03.035

    Article  CAS  Google Scholar 

  64. Affatato S, Ruggiero A, Merola M (2015) Advanced biomaterials in hip joint arthroplasty. A review on polymer and ceramics composites as alternative bearings. Compos Part B Eng 83:276–283. https://doi.org/10.1016/j.compositesb.2015.07.019

    Article  CAS  Google Scholar 

  65. Morsi K, Keshavan H, Bal S (2004) Hot pressing of graded ultrafine-grained alumina bioceramics. Mater Sci Eng A 386:384–389

    Article  Google Scholar 

  66. Samuel S, Nag S, Scharf TW, Banerjee R (2008) Wear resistance of laser-deposited boride reinforced Ti–Nb–Zr–Ta alloy composites for orthopedic implants. Mater Sci Eng C 28:414–420. https://doi.org/10.1016/j.msec.2007.04.029

    Article  CAS  Google Scholar 

  67. Ege D, Duru İ, Kamali AR, Boccaccini AR (2017) Nitride, zirconia, alumina, and carbide coatings on Ti6Al4V femoral heads: effect of deposition techniques on mechanical and tribological properties. Adv Eng Mater 19:49–54. https://doi.org/10.1002/adem.201700177

    Article  CAS  Google Scholar 

  68. Chen Y, Zhang J, Dai N et al (2017) Corrosion behaviour of selective laser melted Ti-TiB biocomposite in simulated body fluid. Electrochim Acta 232:89–97. https://doi.org/10.1016/J.ELECTACTA.2017.02.112

    Article  CAS  Google Scholar 

  69. Toptan F, Rego A, Alves AC, Guedes A (2016) Corrosion and tribocorrosion behavior of Ti–B4C composite intended for orthopaedic implants. J Mech Behav Biomed Mater 61:152–163. https://doi.org/10.1016/j.jmbbm.2016.01.024

    Article  CAS  Google Scholar 

  70. Das M, Bhattacharya K, Dittrick SA et al (2014) In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings: microstructure, tribological and in vitro biocompatibility. J Mech Behav Biomed Mater 29:259–271. https://doi.org/10.1016/j.jmbbm.2013.09.006

    Article  CAS  Google Scholar 

  71. Kaczmarek M, Jurczyk MU, Miklaszewski A et al (2016) In vitro biocompatibility of titanium after plasma surface alloying with boron. Mater Sci Eng C 69:1240–1247. https://doi.org/10.1016/j.msec.2016.08.006

    Article  CAS  Google Scholar 

  72. Bahl S, Raj S, Vanamali S et al (2014) Effect of boron addition and processing of Ti–6Al–4V on corrosion behavior and biocompatibility. Mater Technol 29:B64–B68

    Article  CAS  Google Scholar 

  73. Majumdar P, Singh SB, Dhara S, Chakraborty M (2015) Influence of boron addition to Ti–13Zr–13Nb alloy on MG63 osteoblast cell viability and protein adsorption. Mater Sci Eng C 46:62–68. https://doi.org/10.1016/j.msec.2014.10.012

    Article  CAS  Google Scholar 

  74. Majumdar P, Singh SB, Dhara S, Chakraborty M (2012) Influence of in situ TiB reinforcements and role of heat treatment on mechanical properties and biocompatibility of β Ti-alloys. J Mech Behav Biomed Mater 10:1–12. https://doi.org/10.1016/j.jmbbm.2012.02.014

    Article  CAS  Google Scholar 

  75. Sivakumar B, Singh R, Pathak LC (2015) Corrosion behavior of titanium boride composite coating fabricated on commercially pure titanium in Ringer’s solution for bioimplant applications. Mater Sci Eng C 48:243–255. https://doi.org/10.1016/j.msec.2014.12.002

    Article  CAS  Google Scholar 

  76. Das M, Bhattacharya K, Dittrick SA et al (2014) In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings: microstructure, tribological and in vitro biocompatibility. J Mech Behav Biomed Mater 29:259–271

    Article  CAS  Google Scholar 

  77. Li BS, Shang JL, Guo JJ, Fu HZ (2004) In situ observation of fracture behavior of in situ TiBw/Ti composites. Mater Sci Eng A 383:316–322

    Article  CAS  Google Scholar 

  78. Soboyejo WO, Shen W, Srivatsan T (2004) An investigation of fatigue crack nucleation and growth in a Ti–6Al–4V/TiB in situ composite. Mech Mater 36:141–159

    Article  Google Scholar 

  79. Emura S, Yang S, Hagiwara M (2004) Room-temperature tensile and high-cycle-fatigue strength of fine TiB particulate-reinforced Ti–22Al–27Nb composites. Metall Mater Trans A 35A:2971–2979

    Article  CAS  Google Scholar 

  80. Fan Z, Chandrasekaran L, Ward-Close CM, Miodownik AP (1995) The effect of pre-consolidation heat treatment on TiB morphology and mechanical properties of rapidly solidified Ti–6Al–4V–XB alloys. Scr Metall Mater 32:833–838. https://doi.org/10.1016/0956-716X(95)93210-U

    Article  CAS  Google Scholar 

  81. Kobayashi M, Funami K, Suzuki S, Ouchi C (1998) Manufacturing process and mechanical properties of fine TiB dispersed Ti–6Al–4V alloy composites obtained by reaction sintering. Mater Sci Eng A 243:279–284

    Article  Google Scholar 

  82. Godfrey TMT, Wisbey A, Goodwin PS, Bagnall K (2000) Microstructure and tensile properties of mechanically alloyed Ti–6A1–4V with boron additions. Mater Sci Eng A 282:240–250. https://doi.org/10.1016/S0921-5093(99)00699-1

    Article  Google Scholar 

  83. Ravi Chandran KS, Panda KB, Sahay SS (2004) TiBw-reinforced Ti composites: processing, properties, application prospects, and research needs. JOM 56:42–48. https://doi.org/10.1007/s11837-004-0127-1

    Article  Google Scholar 

  84. Feng H, Jia D, Zhou Y (2005) Spark plasma sintering reaction synthesized TiB reinforced titanium matrix composites. Compos Part A Appl Sci Manuf 36:558–563. https://doi.org/10.1016/j.compositesa.2004.09.003

    Article  CAS  Google Scholar 

  85. Ravi Chandran KS, Panda KB (2002) Titanium composites with TiB whiskers. Adv Mater Process 160:59–62

    Google Scholar 

  86. Panda KB, Ravichandran KS (2003) Synthesis of ductile titanium-titanium boride (Ti–TiB) composites with a beta-titanium matrix: the nature of TiB formation and composite properties. Metall Mater Trans A Phys Metall Mater Sci 34(A):1371–1385. https://doi.org/10.1007/s11661-003-0249-z

    Article  Google Scholar 

  87. Zhang X, Xu Q, Han J, Kvanin VL (2003) Self-propagating high temperature combustion synthesis of TiB/Ti composites. Mater Sci Eng A 348:41–46. https://doi.org/10.1016/S0921-5093(02)00635-4

    Article  CAS  Google Scholar 

  88. Atri R, Ravichandran K, Jha S (1999) Elastic properties of in situ processed Ti–TiB composites measured by impulse excitation of vibration. Mater Sci Eng A 271:150–159. https://doi.org/10.1016/S0921-5093(99)00198-7

    Article  Google Scholar 

  89. Radhakrishna Bhat BV, Subramanyam J, Bhanu Prasad VV (2002) Preparation of Ti–TiB–TiC & Ti–TiB composites by in situ reaction hot processing. Mater Sci Eng A 325:126–130. https://doi.org/10.1016/S0921-5093(01)01412-5

    Article  Google Scholar 

Download references

Acknowledgement

The author would like to thank San Diego State University for granting his sabbatical leave which provided the ability to write this review paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Morsi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morsi, K. Review: titanium–titanium boride composites. J Mater Sci 54, 6753–6771 (2019). https://doi.org/10.1007/s10853-018-03283-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-03283-w

Navigation